感知机(perceptron)--最基本的神经网络算法模型

人工神经网络(ANN's)是人脑的一个模型

  人工神经网络受到人类中枢神经系统的启发。就像是人脑生物结构的对应物一样,ANN's的是建立在简单的信号处理元件上,这些元件连接在一起形成一个大的网格。

神经网络可以做什么?

识别面孔,

识别语音,

读你的笔迹(我的也许不是),

翻译文本,

玩游戏(通常是棋盘游戏或纸牌游戏)

控制自动车辆和机器人。

当然还有更多的事情!


神经网络的拓扑结构

  将神经网络的节点编织在一起的方法有很多种,每一种方式都会产生一种或多或少的复杂行为。可能最简单的拓扑结构是前馈网络。信号只向一个方向流动;信号路径中没有任何循环。

                        

  通常,ANN's的结构是分层的。输入层接收输入信号并将其传递到下一层,即所谓的“隐藏层”。(实际上,在神经网络中可能有多个隐藏层。)最后是传递结果的输出层。


神经网络必须学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值