人工神经网络(ANN's)是人脑的一个模型
人工神经网络受到人类中枢神经系统的启发。就像是人脑生物结构的对应物一样,ANN's的是建立在简单的信号处理元件上,这些元件连接在一起形成一个大的网格。
神经网络可以做什么?
识别面孔,
识别语音,
读你的笔迹(我的也许不是),
翻译文本,
玩游戏(通常是棋盘游戏或纸牌游戏)
控制自动车辆和机器人。
当然还有更多的事情!
神经网络的拓扑结构
将神经网络的节点编织在一起的方法有很多种,每一种方式都会产生一种或多或少的复杂行为。可能最简单的拓扑结构是前馈网络。信号只向一个方向流动;信号路径中没有任何循环。
通常,ANN's的结构是分层的。输入层接收输入信号并将其传递到下一层,即所谓的“隐藏层”。(实际上,在神经网络中可能有多个隐藏层。)最后是传递结果的输出层。
神经网络必须学习