关于二叉树操作的11个算法

#include <stdlib.h>
#define STACK_MAX_SIZE 30
#define QUEUE_MAX_SIZE 30
#ifndef elemType
typedef char elemType;
#endif
/************************************************************************/
/*                       以下是关于二叉树操作的11个简单算法                */
/************************************************************************/
struct BTreeNode{
elemType data;
struct BTreeNode *left;
struct BTreeNode *right;
};

/* 1.初始化二叉树 */
void initBTree(struct BTreeNode* *bt)
{
*bt = NULL;
return;
}

/* 2.建立二叉树(根据a所指向的二叉树广义表字符串建立) */
void createBTree(struct BTreeNode* *bt, char *a)
{
struct BTreeNode *p;
struct BTreeNode *s[STACK_MAX_SIZE];/* 定义s数组为存储根结点指针的栈使用 */
int top = -1; /* 定义top作为s栈的栈顶指针,初值为-1,表示空栈 */
int k; /* 用k作为处理结点的左子树和右子树,k = 1处理左子树,k = 2处理右子树 */
int i = 0; /* 用i扫描数组a中存储的二叉树广义表字符串,初值为0 */
*bt = NULL; /* 把树根指针置为空,即从空树开始建立二叉树 */
/* 每循环一次处理一个字符,直到扫描到字符串结束符/0为止 */
while(a[i] != '/0'){
      switch(a[i]){
          case ' ':
     break;   /* 对空格不作任何处理 */
    case '(':
     if(top == STACK_MAX_SIZE - 1){
         printf("栈空间太小!/n");
      exit(1);
     }
     top++;
     s[top] = p;
     k = 1;
     break;
          case ')':
     if(top == -1){
         printf("二叉树广义表字符串错误!/n");
      exit(1);
     }
     top--;
     break;
    case ',':
     k = 2;
     break;
    default:
     p = malloc(sizeof(struct BTreeNode));
     p->data = a[i];
     p->left = p->right = NULL;
     if(*bt == NULL){
      *bt = p;
     }else{
         if( k == 1){
             s[top]->left = p;
         }else{
             s[top]->right = p;
         }
     }
      }
   i++;   /* 为扫描下一个字符修改i值 */
}
return;
}

/* 3.检查二叉树是否为空,为空则返回1,否则返回0 */
int emptyBTree(struct BTreeNode *bt)
{
if(bt == NULL){
      return 1;
}else{
      return 0;
}
}

/* 4.求二叉树深度 */
int BTreeDepth(struct BTreeNode *bt)
{
if(bt == NULL){
      return 0;   /* 对于空树,返回0结束递归 */
}else{
      int dep1 = BTreeDepth(bt->left);   /* 计算左子树的深度 */
   int dep2 = BTreeDepth(bt->right);   /* 计算右子树的深度 */
   if(dep1 > dep2){
       return dep1 + 1;
   }else{
       return dep2 + 1;
   }
}
}

/* 5.从二叉树中查找值为x的结点,若存在则返回元素存储位置,否则返回空值 */
elemType *findBTree(struct BTreeNode *bt, elemType x)
{
if(bt == NULL){
      return NULL;
}else{
      if(bt->data == x){
          return &(bt->data);
      }else{ /* 分别向左右子树递归查找 */
          elemType *p;
    if(p = findBTree(bt->left, x)){
        return p;
    }
    if(p = findBTree(bt->right, x)){
        return p;
    }
    return NULL;
      }
}
}

/* 6.输出二叉树(前序遍历) */
void printBTree(struct BTreeNode *bt)
{
/* 树为空时结束递归,否则执行如下操作 */
if(bt != NULL){
      printf("%c", bt->data);   /* 输出根结点的值 */
   if(bt->left != NULL || bt->right != NULL){
    printf("(");
    printBTree(bt->left);
    if(bt->right != NULL){
        printf(",");
    }
    printBTree(bt->right);
    printf(")");
   }  
}
return;
}

/* 7.清除二叉树,使之变为一棵空树 */
void clearBTree(struct BTreeNode* *bt)
{
if(*bt != NULL){
      clearBTree(&((*bt)->left));
   clearBTree(&((*bt)->right));
   free(*bt);
   *bt = NULL;
}
return;
}

/* 8.前序遍历 */
void preOrder(struct BTreeNode *bt)
{
if(bt != NULL){
      printf("%c ", bt->data);   /* 访问根结点 */
   preOrder(bt->left);     /* 前序遍历左子树 */
   preOrder(bt->right);    /* 前序遍历右子树 */
}
return;
}


/* 9.前序遍历 */
void inOrder(struct BTreeNode *bt)
{
if(bt != NULL){
   inOrder(bt->left);     /* 中序遍历左子树 */
      printf("%c ", bt->data);   /* 访问根结点 */
   inOrder(bt->right);     /* 中序遍历右子树 */
}
return;
}

/* 10.后序遍历 */
void postOrder(struct BTreeNode *bt)
{
if(bt != NULL){
   postOrder(bt->left);    /* 后序遍历左子树 */
   postOrder(bt->right);    /* 后序遍历右子树 */
   printf("%c ", bt->data);   /* 访问根结点 */
}
return;
}

/* 11.按层遍历 */
void levelOrder(struct BTreeNode *bt)
{
struct BTreeNode *p;
struct BTreeNode *q[QUEUE_MAX_SIZE];
int front = 0, rear = 0;
/* 将树根指针进队 */
if(bt != NULL){
      rear = (rear + 1) % QUEUE_MAX_SIZE;
   q[rear] = bt;
}
while(front != rear){   /* 队列非空 */
      front = (front + 1) % QUEUE_MAX_SIZE; /* 使队首指针指向队首元素 */
   p = q[front];
   printf("%c ", p->data);
   /* 若结点存在左孩子,则左孩子结点指针进队 */
   if(p->left != NULL){
       rear = (rear + 1) % QUEUE_MAX_SIZE;
    q[rear] = p->left;
   }
   /* 若结点存在右孩子,则右孩子结点指针进队 */
   if(p->right != NULL){
       rear = (rear + 1) % QUEUE_MAX_SIZE;
    q[rear] = p->right;
   }
}
return;
}

/************************************************************************/

/*
int main(int argc, char *argv[])
{
struct BTreeNode *bt; /* 指向二叉树根结点的指针 */
char *b;     /* 用于存入二叉树广义表的字符串 */
elemType x, *px;
initBTree(&bt);
printf("输入二叉树广义表的字符串:/n");
/* scanf("%s", b); */
b = "a(b(c), d(e(f, g), h(, i)))";
createBTree(&bt, b);
if(bt != NULL)
printf(" %c ", bt->data);
printf("以广义表的形式输出:/n");
printBTree(bt);    /* 以广义表的形式输出二叉树 */
printf("/n");
printf("前序:");   /* 前序遍历 */
preOrder(bt);
printf("/n");
printf("中序:");   /* 中序遍历 */
inOrder(bt);
printf("/n");
printf("后序:");   /* 后序遍历 */
postOrder(bt);
printf("/n");
printf("按层:");   /* 按层遍历 */
levelOrder(bt);
printf("/n");
/* 从二叉树中查找一个元素结点 */
printf("输入一个待查找的字符:/n");
scanf(" %c", &x);   /* 格式串中的空格跳过空白字符 */
px = findBTree(bt, x);
if(px){
      printf("查找成功:%c/n", *px);
}else{
      printf("查找失败!/n");
}
printf("二叉树的深度为:");
printf("%d/n", BTreeDepth(bt));
clearBTree(&bt);
return 0;
}
*/
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值