Surrounded Regions

Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'.

A region is captured by flipping all 'O's into 'X's in that surrounded region.

For example,

X X X X
X O O X
X X O X
X O X X

After running your function, the board should be:

X X X X
X X X X
X X X X
X O X X

这道题很好体现基本搜索算法。两种经典算法深度优先、广度优先。

在实现深度优先时我尝试使用java实现,发现无法AC,会出现栈溢出错误,因为深度搜索需要一直调用dfs函数进行压栈,导致stackoverflow 。但是通过使用c++传递引用却能在比较短时间完成深搜,这也是java 和c++在语言上的不同特性吧,c++要效率要比java高很多。

未AC的java代码

public class Solution {
 
 	char [][] board; 
	public void solve(char[][] board) {
		if(board.length ==0 || board[0].length == 0){
			return;
		}	
		this.board = board;
		int rows = board.length;
		int cols = board[0].length;
		for(int i=0;i<cols;i++){
			dfs( 0, i);
			dfs( rows-1, i);
		}
		for(int i=1;i<rows;i++){
			dfs( i, 0);
			dfs(i, cols-1);
		}
		for(int i=0;i<rows;i++){
			for(int j=0;j<cols;j++){
				if(board[i][j]== 'O'){
					board[i][j] = 'X';
				}
				if(board[i][j]== '+'){
					board[i][j] = 'O';
				}
			}
		}
		
	}
	public void dfs(int row,int col){
		int rows = board.length;
		int cols = board[0].length;
		if(row>=rows || row<0 || col>=cols || col<0){
			return;
		}
		if(board[row][col]!='O'){
			return;
		}
		board[row][col] = '+';
		dfs( row-1, col);// up
		dfs( row+1, col);// down
		dfs( row, col-1);// left
		dfs( row, col+1);// right
	}


}



DFS 深度优先:C++实现不会出现超时问题

首先考虑到这道题涉及是关于连通性的问题,我们在进行搜索时开始于就是board 的四个边界,如果与边界'O' 连通的'O'不需要改变,与边界'O'不连通的需要变为‘X'这就是这道题的核心思想。

算法思路:从外围是’O'的开始深度往里走,这时候里面的‘O'就有两种命运,一种是跟外围的’O'是联通的,那么这些‘O'就可以存活,剩下的孤立的’O'就没办法了,就只能被‘X'了,为了区分这两种’O',我们把联通 的‘O'改为另外一种统一而独立的字符,便于后期做恢复。这就是三步走(或两步)。

1)首先从外围的‘O'处深度搜索,见到链接的’O'就把他们都改为其他标识。

2)将剩余的孤立的’O'改为‘X',同时,将遇到标识符改为’O'。

已经AC的C++代码。

class Solution {
private:
	int rows;
	int cols;
public:
	void dfs(int row, int col,vector<vector<char> >& board)
	{
		if(row < 0 || row >= rows || col < 0 || col >= cols) return;
		if(board[row][col] != 'O') return;
		board[row][col] = '+';
		dfs(row - 1, col, board);//up
		dfs(row, col + 1, board);//right
		dfs(row + 1, col, board);//down
		dfs(row, col - 1, board);//left
	}
	void solve(vector<vector<char> > &board)
	{
		if(board.size() == 0 || board[0].size() == 0)
			return;
		 rows = board.size();
		 cols = board[0].size();
		 for(int i = 0; i < rows; ++i){
			 dfs(i, 0, board);
			 dfs(i, cols - 1, board);
		 }
		 for (int j = 0; j < cols; ++j)
		 {
			 dfs(0, j, board);
			 dfs(rows - 1, j, board);
		 }
		 for(int i = 0; i < rows; ++i)
			 for (int j = 0; j < cols; ++j)
			 {
				if(board[i][j] == 'O')
					board[i][j] = 'X';
				else if(board[i][j] == '+')
					 board[i][j] = 'O';		 
			 }	 
	}
};


 其实这里使用广度优先搜索可能更好理解,下面使用java 进行广度优先搜索实现:

已经AC的java广搜代码。

public class Solution {
	int m, n;
	char[][] board;
	boolean [][] flag;
	Queue<Integer> queue = new LinkedList<Integer>();
	public void solve(char[][] board) {	
		if (board == null || board.length == 0)
			return;
		flag = new boolean[board.length][board[0].length];// 标记位置是否来过
		this.board = board;
		m = board.length;
		n = board[0].length;
		for (int j = 0; j < n; j++) {
			bfs(0, j);
			bfs(m - 1, j);
		}
		for (int i = 0; i < m ; i++) {
			bfs(i, 0);
			bfs(i, n - 1);
		}
		for (int i = 0; i < m; i++)
			for (int j = 0; j < n; j++) {
				if (board[i][j] == 'O')
					board[i][j] = 'X';
				else if (board[i][j] == 'D')
					board[i][j] = 'O';
			}
	}
	void fill(int x, int y) {
		if (x < 0 || x >= m || y < 0 || y >= n || board[x][y] != 'O' || flag[x][y] == true)
			return;
		flag[x][y] = true;
		queue.offer(x * n + y);
		board[x][y] = 'D';
	}

	public void bfs(int x, int y) {
		fill(x, y);
		while (!queue.isEmpty()) {
			int curr = queue.poll();
			int i = curr / n;
			int j = curr % n;

			fill(i - 1, j);
			fill(i + 1, j);
			fill(i, j - 1);
			fill(i, j + 1);
		}
	}
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值