logistic回归与python实现

logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率。
例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。
这里的因变量就是是否胃癌,即“是”或“否”,为两分类变量,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。
自变量既可以是连续的,也可以是分类的。
通过logistic回归分析,就可以大致了解到底哪些因素是胃癌的危险因素。机器学习实战中研究就是关于马患胃癌的分析。

理论知识部分:

Logistic Regression 的hypotheses函数

在Linear Regression中,如果我们假设待预测的变量y是离散的一些值,那么这就是分类问题。如果y只能取0或1,这就是binary classification的问题。我们仍然可考虑用Regression的方法来解决binary classification的问题。但是此时,由于我们已经知道y \in {0,1},而不是整个实数域R,我们就应该修改hypotheses函数h_\theta(x)的形式,可以使用Logistic Function将任意实数映射到[0,1]的区间内。即


其中我们对所有feature先进行线性组合,即\theta' * x = \theta_0 * x_0 + \theta_1 * x_1 +\theta_2 * x_2 ..., 然后把线性组合后的值代入Logistic Function(又叫sigmoid function)映射成[0,1]内的某个值。Logistic Function的图像如下

当z->正无穷大时,函数值->1;当z->负无穷大时,函数值->0.因此新的hypotheses函数h_\theta(x)总是在[0,1]这个区间内。我们同样增加一个feature x_0 = 1以方便向量表示。Logistic Function的导数可以用原函数来表示,即


这个结论在后面学习参数\theta的时候还会使用到。

2  用最大似然估计和梯度上升法学习Logistic Regression的模型参数\theta

给定新的hypotheses函数h_\theta(x),我们如何根据训练样本来学习参数\theta呢?我们可以考虑从概率假设的角度使用最大似然估计MLE来fit data(MLE等价于LMS算法中的最小化cost function)。我们假设:


即用hypotheses函数h_\theta(x)来表示y=1的概率; 1-h_\theta(x)来表示y=0的概率.这个概率假设可以写成如下更紧凑的形式


假设我们观察到了m个训练样本,它们的生成过程独立同分布,那么我们可以写出似然函数


取对数后变成log-likelihood


我们现在要最大化log-likelihood求参数\theta. 换一种角度理解,就是此时cost function J = - l(\theta),我们需要最小化cost function 即- l(\theta)。

类似于我们在学习Linear Regression参数时用梯度下降法,这里我们可以采用梯度上升法最大化log-likelihood,假设我们只有一个训练样本(x,y),那么可以得到SGA(增量梯度上升)的update rule


里面用到了logistic function的导数的性质 即 g' = g(1-g).于是我们可以得到参数更新rule


这里是不断的加上一个量,因为是梯度上升。\alpha是learning rate. 从形式上看和Linear Regression的参数 LMS update rule是一样的,但是实质是不同的,因此假设的模型函数h_\theta(x)不同。在Linear Regression中只是所有feature的线性组合;在Logistic Regression中是先把所有feature线性组合,然后在带入Logistic Function映射到区间[0,1]内,即此时h_\theta(x)就不再是一个线性函数。其实这两种算法都是Generalized Linear Models的特例。

python 实现部分(来自机器学习实战第五章):

from numpy import *

def loadDataSet():
    dataMat=[]; labelMat=[]
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

def gradAscent(dataMatIn,classLabels):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxIteration = 500
    weights = ones((n,1))
    for k in range(maxIteration):
        h = sigmoid(dataMatrix * weights)
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):# get x,y locate at xcord ycord 
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

if __name__ == "__main__":
    dataArr,labelMat = loadDataSet()
    print(dataArr)
    print(labelMat)
    weights = gradAscent(dataArr, labelMat)
    print(weights)
    plotBestFit(weights.getA())


gradAscent 函数中最重要的一步对theta迭代,前面公式进行了推导。plotBestFit 画出决策边界。

 

  • 7
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: Logistic回归是一种二分类算法,可以用于预测一个样本属于哪一类。在Python中,可以使用scikit-learn库中的LogisticRegression模块来实现Logistic回归。 首先,需要导入相关的库和数据集。例如,可以使用sklearn.datasets中的load_breast_cancer数据集。 ```python from sklearn.datasets import load_breast_cancer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 导入数据集 data = load_breast_cancer() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=.2, random_state=42) ``` 接下来,可以使用LogisticRegression模块来训练模型,并进行预测。 ```python # 训练模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集 y_pred = model.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy: {:.2f}%".format(accuracy * 100)) ``` 最后,可以输出模型的准确率。 ### 回答2: logistic回归是一种经典的分类算法,通常用于解决二分类问题。在实现时,可以使用Python中的Scikit-learn库来进行建模和预测。 首先,需要准备好数据集,该数据集应该包含二分类变量和一些预测变量。可以使用Pandas库来读取和处理数据集。在logistic回归中,需要将目标变量转换为二进制变量(0或1)。 接下来,需要将数据集拆分为训练集和测试集。训练集用于训练模型,而测试集则用于评估模型的性能。可以使用Scikit-learn库中的train_test_split函数来实现数据集的拆分。 接下来,需要使用Scikit-learn库中的LogisticRegression类来进行模型训练。当创建实例时,我们可以设置一些参数,如正则化强度,以控制模型的复杂度。我们还可以使用fit方法拟合数据集,从而训练模型。 一旦模型被训练,我们就可以使用predict或predict_proba方法对测试集进行预测。predict方法将返回类标签,而predict_proba方法将返回概率。 在训练和预测过程中,需要注意异常值、缺失值和特征缩放等问题。这些问题可以使用数据清洗和预处理方法来解决。 总的来说,使用Python实现logistic回归是一项简单而有用的任务。通过对数据进行预处理、拟合和评估,我们可以得到一个准确性较高的模型,并用它来解决分类问题。 ### 回答3: Logistic回归是一种适用于二分类问题的机器学习算法。在实现Logistic回归时,我们可以使用Python编程语言。Python提供了多个机器学习库,如Scikit-learn、TensorFlow等,可以帮助我们构建Logistic回归模型。 首先,我们需要将数据集导入到Python环境中。通常使用Pandas数据处理库,可以方便地读取各种格式的数据文件。然后,我们需要对数据进行预处理,比如去除重复值、填充空值、标准化/归一化等。 接下来,我们需要将数据集分成训练集和测试集。训练集用于训练Logistic回归模型,测试集用于评估模型的性能。一般情况下,我们使用80%的数据作为训练集,20%的数据作为测试集。 接着,我们可以使用Scikit-learn库中的LogisticRegression类来构建Logistic回归模型。该类提供了多个参数,如正则化系数、迭代次数、优化算法等,可以根据具体数据集的特征进行选择。在训练模型后,我们可以使用模型对测试集进行预测,并计算模型的准确率、精确率、召回率等指标。 在实际应用中,我们可以对Logistic回归模型进行优化,比如使用特征选择方法、调整超参数、尝试不同的正则化方法等。此外,我们还可以使用深度学习框架如TensorFlow等实现更加复杂的Logistic回归模型,如多分类Logistic回归、含非线性特征的Logistic回归等。 总之,Python提供了丰富的机器学习库与工具,可以帮助我们很快地构建Logistic回归模型。在实际应用中,还需要根据具体数据集的特征进行调整和优化,以提高模型的预测能力。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值