N皇后问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3464 Accepted Submission(s): 1599
Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
8
Sample Output
92
由于棋盘的每列只有一个皇后,所i可以用一维向量A(a1,a2,a3……an)来表示第i列皇后所在的行a[i],即解空间的每个结点都有n个儿子,因此解空间大小为n^n,这是一颗子集树。
约束条件是斜率和行号都不可以相等。
回溯算法解题思路:
1.针对给定的问题,定义问题的解空间(子集树还是排列树)
2.确定易于搜索的解空间结构
3.以深度优先的方法搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
#define NUM 20
int n;
int x[NUM];
int sum;
inline bool Place(int t)
{
int i;
for (i=1; i<t; i++)
if ((abs(t-i) == abs(x[i]-x[t])) || (x[i] == x[t])) //斜率相等或者行号相等
return false;
return true;
}
void Backtrack(int t)
{
int i;
if (t>n)
{
sum++;
}
else
for (i=1; i<=n; i++)
{
x[t] = i;
if (Place(t)) Backtrack(t+1);
}
}
int main()
{
while (cin>>n)
{
sum = 0;
Backtrack(1);
printf("%d\n", sum);
}
return 0;
}