TensorFlow机器学习实战指南——山鸢尾花分类

使用TensorFlow建立了一个二元分类模型,针对山鸢尾花数据集进行训练。通过梯度下降优化器训练了1000步,并展示了训练过程中权重参数的变化。最后,绘制了分类边界线与数据点分布图,有效地将鸢尾花中的山鸢尾花与其他类别分开。
摘要由CSDN通过智能技术生成
import numpy as np
import tensorflow as tf
import  matplotlib.pyplot as plt
from sklearn import datasets

sess = tf.Session()

iris = datasets.load_iris()
binary_target = np.array([1.0 if x ==0 else 0. for x in iris.target])
iris_2d = np.array([[x[2], x[3]] for x in iris.data])

batch_size = 20
x1_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
x2_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1]))

my_mult = tf.matmul(x2_data, A)
my_add = tf.add(my_mult, b)
my_output = tf.subtract(x1_data, my_add)

xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target)

my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值