<pre name="code" class="cpp">/*
* copyleft@hustyangju
* 问题:longest common subsequece problem
* 思路:从底往上,利用动态规划,划分子问题,利用LCS子问题的长度变化,求得LCS
* 时间复杂度O(m*n)
* 空间复杂度O(m*n)
*/
#include <iostream>
//#include <string>
using namespace std;
class lcs
{
public:
lcs(char *a,int m, char *b, int n):_a(a),a_length(m),_b(b),b_length(n)//传递两个字符串,并传递其长度
{
for(int i=0;i<100;i++)
{
for(int j=0;j<100;j++)
count[i][j]=0;
}
if(max(sizeof(a),sizeof(b))>100)
cout<<"error! count[100][100] too small!"<<endl;
}
~lcs()
{
if(_a!=NULL)
{
delete _a;
_a=NULL;
}
if(_b!=NULL)
{
delete _b;
_b=NULL;
}
}
void get_lcs();
private:
char *_a; //字符串一
int a_length; //长度
char *_b; //字符串二
int b_length; //长度
int count[100][100]; //LCS长度二维状态数组
};
/* 0 i=0 or j=0
*
*count[i][j]= count[i-1][j-1]+1 X[i-1]==Y[j-1] and i ,j>0
*
* max(count[i-1][j],count[i][j-1]) X[i-1]!=Y[j-1] and i ,j>0
*/
void lcs::get_lcs()
{
int m=a_length;
int n=b_length;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(*(_a+i-1)==*(_b+j-1))
{
count[i][j]=count[i-1][j-1]+1;
}
else if(count[i-1][j]>=count[i][j-1])
{
count[i][j]=count[i-1][j];
}
else
count[i][j]=count[i][j-1];
}//for
}
/*打印LCS长度二维数组*/
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
cout<<count[i][j]<<" ";
cout<<endl;
}
/*LCS 长度*/
cout<<"LCS length:"<<count[m][n]<<endl;
/*输出LCS,这里有一个技巧,就是分别增加一个字符串的长度和另外一整个个字符串比较,LCS长度增加1,说明该位置是LCS的一个字符*/
cout<<"LCS is:"<<endl;
for(int p=1;p<=n;p++)
{
if(count[m][p]-count[m][p-1]==1)
cout<<*(_b+p-1)<<" ";
}
cout<<endl;
}
int main()
{
char a[]="ABCBDAB";
cout<<a<<endl;
char b[]="BECBD";
cout<<b<<endl;
lcs mylcs(a,sizeof(a)-1,b,sizeof(b)-1);
mylcs.get_lcs();
}
结果: