
笔记
文章平均质量分 66
@不要和我港话
这个作者很懒,什么都没留下…
展开
-
用Python对我们自己标注的数据集转化为YOLO训练需要的txt文件
用Python对我们自己标注的数据集转化为YOLO训练需要的txt文件一. 数据分类在项目的根目录下新建一个maketxt.py文件。该脚本会在straw/ImageSets文件夹下生成:trainval.txt, test.txt, train.txt, val.txt,内容如下图所示,将图片分成了训练集,验证集和测试集,并将文件名(不带扩展名)汇总在txt文件中。import osimport randomtrainval_percent = 0.1train_percent = 0.9原创 2021-08-25 11:13:49 · 850 阅读 · 1 评论 -
用Python对数据集进行重命名
用Python对数据集进行重命名新建一个rename.py 文件import ospic_path = "F:\\straw\\"def rename(): piclist = os.listdir(pic_path) total_num = len(piclist) i = 1 for pic in piclist: if pic.endswith(".jpg"): old_path = os.path.join(os原创 2021-08-25 10:21:22 · 1571 阅读 · 0 评论 -
用Python实现KNN算法(从原理到代码的实现)
用Python实现KNN算法(从原理到代码的实现)环境1.Pycharm2.python3.6一、KNN算法的原理1.1算法介绍KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些KNN算法的蛛丝马迹了。K个最近邻居,毫无疑问,K的取值肯定是至关重要的。那么最近的邻居又是怎么回事呢?其实啊,KNN的原理就是当预测一个新的值x的时候,根据它距离最近的K个点是什么类别来判断x属于哪个类别。听起来有点绕,还是看看图吧。图中绿色的点就是我们要预测的原创 2020-11-28 21:48:27 · 10968 阅读 · 10 评论 -
tf.greater()和tf.where()
tf.greater()和tf.where()loss= tf.reduce sum(tf where(tf.greater(v1,v2)(vl-v2) * a , (v2 - vl) * b)) tf.greater(v1,v2)意思就是比较V1和V2的大小,如果V1>V2则返回true,否则返回False。而tf.where(A, v3,v4),如果A=true,则返回V3,如果A=False,则返回V4。故:代码块的意思就能很好的理解了。再给出一个实例:import tenso原创 2020-11-09 19:44:53 · 404 阅读 · 0 评论 -
tensorflow总结(用tensorflow写一个完整的神经网络)
声明:本文为博主原创文章,转载请附上博文链接!以下只是初学tensorflow的总结和遇到的问题基于TensorFlow在模拟数据集上训练一个神经网络以下是代码和我的一些标注:import tensorflow as tffrom numpy.random import RandomStatebatch_size = 8w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))w2 = tf.Variable(tf.ran.原创 2020-11-08 22:31:08 · 571 阅读 · 0 评论 -
pytorch搭建PyQt5界面实战:ResNet-18实现CLFAR-10图像分类,并进行界面显示
pytorch实战:ResNet-18实现CLFAR-10图像分类,并利用PyQt5进行人机界面显示实验环境:1.pytorch-1.6.02.python-3.7.93.window-104.pycharm5.pyqt5(相应的QT Designer及工具包)CLFAR-10的数据集作为一个初学者,在官网下载CLFAR-10的数据集下载速度不仅慢,而且不是常用的图片格式,这里是转换后的数据集,有需要的可以直接百度云盘提取。链接:https://pan.baidu.com/s/1l7wvW原创 2020-11-05 11:32:13 · 14268 阅读 · 43 评论