高并发系统设计及核心技术原理分析

胡弦,视频号2023年度优秀创作者,互联网大厂P8技术专家,Spring Cloud Alibaba微服务架构实战派(上下册)和RocketMQ消息中间件实战派(上下册)的作者,资深架构师,技术负责人,极客时间训练营讲师,四维口袋KVP最具价值技术专家,技术领域专家团成员,2021电子工业出版社年度优秀作者,获得2023电子工业出版技术成长领路人称号,荣获2024年电子工业出版社博文视点20周年荣誉专家称号。

高并发系统设计是互联网分布式系统架构设计中必须考虑的因素之一,它旨在通过合理的设计确保系统能够同时并行处理大量请求。以下是对高并发系统设计及其核心技术原理的详细分析。

1.概要设计

1.1 高并发系统设计原则

(1)无状态:服务在处理业务逻辑时尽量不保存状态信息,以便实现水平扩展。状态信息可以保存在第三方配置中心或数据库中。

(2)拆分:按照功能、系统、模块等维度将大型应用拆分为多个小型服务,每个服务独立部署和扩展。

(3)服务化:将进程内服务统一封装对外提供,服务分组,隔离请求,提高系统并发能力。

(4)数据异构:实现数据的自我控制,当其他系统出现问题时不影响自己的系统,分数据异构和数据闭环(包括异构、聚合、前端展示)。

(5)消息队列:实现服务解耦、异步处理、流量削峰/缓冲等。

(6)缓存:利用缓存来减轻数据库和其他后端服务的压力,提高系统响应速度。

(7)并发化:在聚合业务场景中,如果依赖的数据彼此没有相互依赖关系,可以并行请求数据,然后聚合结果。

1.2 高并发系统设计核心技术原理

1.2.1 负载均衡

(1)使用负载均衡器(如Nginx、Haproxy等)来分发流量到多个服务器或实例上,确保每个服务器都能够处理适当的负载。

(2)负载均衡策略包括轮询、最少连接、IP哈希等,可以根据实际需求选择合适的策略。

1.2.2 数据库优化

(1)数据库是高并发系统的瓶颈之一,需要通过优化索引、查询语句、分库分表等方式来提升性能。

(2)读写分离:将数据库的读操作和写操作分离到不同的数据库实例上,以减轻单个数据库实例的负担。

(3)分库分表:将数据库拆分为多个库或多个表,以分散数据的存储和访问压力。

1.2.3 缓存策略

(1)使用Redis、Memcached等缓存技术来存储热点数据,减少对数据库的访问压力。

(2)采用一致性哈希算法等策略来实现缓存的分布式部署和负载均衡。

1.2.4 异步处理

(1)将一些耗时的操作(如文件上传、邮件发送等)改为异步处理,以减少请求的响应时间并提高系统的吞吐量。

(2)异步编程模型包括Future、CompletableFuture等,可以在Java中实现高效的异步处理。

1.2.5 服务治理

(1)服务注册与发现:使用服务注册中心(如Eureka、Consul等)来动态地管理服务的地址和端口信息,实现服务的自动发现和注册。

(2)服务监控与日志:通过监控工具(如Prometheus、Grafana等)来实时监测系统的性能指标和服务可用性,并通过日志记录来排查问题。

1.2.6 容错与容灾

(1)设计系统时需要考虑容错和容灾机制,包括备份、数据同步、故障转移、自动恢复等,以确保系统在面对故障或灾难时能够继续正常运行。

(2)引入熔断器模式(如Hystrix)来防止单个服务的故障扩散到其他服务中,提高系统的整体稳定性。

1.3 高并发系统设计实践

(1)水平扩展:通过增加服务器数量来提升系统的并发处理能力。这可以在应用服务器、数据库、缓存等各个层级进行扩展。

(2)分层架构:将系统分为持久层、业务层、表示层等多个层面,每个层面只承担单一的职责,通过下层为上层提供的基础设施和服务以及上层对下层的调用来形成一个完整的系统。

(3)微服务架构:将系统拆分为多个独立的服务,每个服务负责特定的业务功能,通过轻量级的通信协议(如HTTPgRPC等)进行交互。微服务架构有助于提高系统的可扩展性和可维护性。

高并发系统设计是一个复杂而重要的任务,它涉及到系统的架构设计、数据库优化、缓存策略、异步处理、服务治理等多个方面。通过合理的设计和实践,可以构建一个高性能、高可靠、高可扩展的分布式系统,以应对大量的并发请求。

2.高并发系统的服务无状态架构设计及技术实现原理

高并发系统的服务无状态架构设计是一种重要的架构模式,它有助于提升系统的可扩展性、容错性和负载均衡能力。以下是对高并发系统的服务无状态架构设计及技术实现原理的详细分析。

2.1 服务无状态架构设计概述

服务无状态架构设计是指服务端在处理客户端请求时,不保存任何客户端请求者的状态信息。每次请求都是独立的,服务端只根据请求本身携带的信息进行处理。这种设计方式简化了服务端的状态管理,使得服务可以更容易地进行水平扩展和负载均衡。

2.2 技术实现原理

2.2.1 请求自包含

在无状态架构中,客户端的每次请求都必须自包含所有必要的信息,以便服务端能够识别客户端身份并处理请求。这些信息通常包括身份验证信息、会话信息、业务参数等。

2.2.2 状态外部化

服务端不保存任何客户端的状态信息,而是将这些信息存储在外部系统中,如分布式缓存(如Redis)、数据库或会话服务器等。这样,即使服务端实例发生宕机或重启,也不会丢失客户端的状态信息。

2.2.3 负载均衡

由于无状态服务不依赖于任何特定的服务端实例来处理请求,因此可以更容易地实现负载均衡。负载均衡器可以将请求均匀地分配给所有可用的服务端实例,从而充分利用系统资源并提高处理效率。

2.2.4 水平扩展

无状态架构使得服务端实例可以更容易地进行水平扩展。当系统负载增加时,只需简单地增加更多的服务端实例即可应对流量压力,而无需担心状态同步或数据一致性问题。

2.2.5 容错与恢复

在无状态架构中,由于服务端不保存状态信息,因此任何单一实例的故障都不会影响整个系统的运行。当某个实例发生故障时,负载均衡器可以将请求自动路由到其他正常的实例上,从而实现快速恢复。

2.3 无状态架构的优势

(1)可扩展性:无状态架构使得服务端可以更容易地进行水平扩展,以应对不断增长的流量压力。

(2)容错性:由于服务端不保存状态信息,因此任何单一实例的故障都不会影响整个系统的运行。

(3)负载均衡:无状态架构使得负载均衡更加容易实现,从而充分利用系统资源并提高处理效率。

(4)简化部署和维护:由于服务端实例之间没有状态依赖,因此部署、更新和维护服务变得更加简单和可靠。

2.4 实现无状态架构的注意事项

(1)会话管理:在无状态架构中,会话信息通常存储在外部系统中。因此,需要确保会话数据的安全性和一致性。

(2)状态外部化成本:将状态信息存储在外部系统中可能会增加系统的复杂性和成本。因此,需要仔细权衡利弊并选择合适的外部存储系统。

(3)请求自包含性:为了确保服务端能够正确处理请求,客户端的每次请求都必须自包含所有必要的信息。这可能会增加请求的大小和复杂性。

高并发系统的服务无状态架构设计是一种重要的架构模式,它有助于提升系统的可扩展性、容错性和负载均衡能力。通过请求自包含、状态外部化等技术手段,可以实现无状态架构的设计目标。然而,在实现无状态架构时,也需要注意会话管理、状态外部化成本以及请求自包含性等问题。

3.高并发系统的服务化架构设计及技术原理实现

高并发系统的服务化架构设计及技术原理实现是一个复杂而关键的过程,它旨在将系统拆分为多个独立、可复用的服务,以提高系统的可扩展性、可维护性和响应性能。以下是对高并发系统的服务化架构设计及技术原理实现的详细分析。

3.1 服务化架构设计概述

服务化架构(也称为微服务架构)是一种将大型应用程序拆分为多个小型、独立的服务的方法。每个服务都运行在独立的进程中,通过轻量级通信协议(如HTTPgRPC等)进行交互。服务化架构有助于解耦系统的各个组件,提高系统的灵活性和可伸缩性,使得应用能够更好地适应不断变化的需求和业务规模。

3.2 技术原理实现

3.2.1服务拆分

(1)将大型应用程序拆分为多个小型、独立的服务。每个服务都专注于完成一个特定的业务功能,如用户管理、订单处理等。

(2)服务拆分应遵循业务边界,确保每个服务都具有明确的职责和清晰的接口。

3.2.2 服务注册与发现

(1)使用服务注册中心(如Eureka、Consul等)来管理服务的信息,包括服务的地址、端口、健康状态等。

(2)服务消费者在调用服务时,通过服务注册中心动态地查找服务提供者的地址,实现服务的自动发现和负载均衡。

3.2.3 服务通信

(1)服务之间通过轻量级通信协议进行交互,如RESTful API、gRPC等。

(2)为了提高通信效率,可以采用异步通信方式,如消息队列、事件驱动等。

3.2.4 服务容错与治理

(1)实现服务的容错机制,如断路器模式(Hystrix)、限流、降级等,以提高系统的稳定性和可用性。

(2)通过服务治理平台对服务进行监控、日志记录、性能分析等操作,以便及时发现和解决问题。

3.2.5 服务部署与扩展

(1)每个服务都可以独立地进行部署和扩展,可以根据实际需求动态地增加或减少服务实例的数量。

(2)采用容器化技术(如DockerKubernetes等)来简化服务的部署和管理过程。

3.2.6 数据一致性管理

在服务化架构中,数据可能分布在多个服务中。为了确保数据的一致性,可以采用分布式事务、数据同步、最终一致性等技术手段。

3.2.7 服务安全

实现服务的身份验证、授权、加密等安全机制,以保护服务的安全性和隐私性。

3.3 高并发系统的服务化架构实现策略

3.3.1负载均衡

在服务化架构中,负载均衡是确保系统高并发性能的关键。通过负载均衡器(如NginxHAProxy等)将请求均匀地分配到多个服务实例上,避免单个服务实例过载。

3.3.2 缓存策略

使用分布式缓存(如Redis、Memcached等)来存储热点数据,减少对数据库和服务的直接访问压力。

3.3.3 异步处理

将一些耗时的操作(如文件上传、图像处理等)异步化处理,以提高系统的响应速度和处理能力。

3.3.4 数据库优化

对数据库进行分库分表、读写分离等优化操作,以提高数据库的并发处理能力和响应速度。

3.3.5 服务降级与熔断

在系统高并发或出现故障时,通过服务降级和熔断机制来保护核心服务的稳定运行,避免整个系统崩溃。

高并发系统的服务化架构设计及技术原理实现是一个复杂而关键的过程。通过服务拆分、服务注册与发现、服务通信、服务容错与治理、服务部署与扩展等技术手段,可以构建一个高并发、高可用、可扩展的服务化架构。同时,结合负载均衡、缓存策略、异步处理、数据库优化、服务降级与熔断等实现策略,可以进一步提升系统的并发处理能力和响应速度。

4.承载百万TPS流量的后端服务架构设计和底层数据库设计

承载百万TPS(每秒传输次数)流量的后端服务架构设计和底层数据库设计是一项复杂而关键的任务,需要综合考虑多个方面以确保系统的稳定性、可扩展性和高性能。以下是对这两个方面的详细分析。

4.1 后端服务架构设计

4.1.1 分层架构

通过分层架构将整个系统划分为多个独立的部分,如前端、中间件、后端等,每个部分负责一部分工作,从而降低系统的复杂度和耦合度。

4.1.2 模块化设计

将整个系统划分为多个模块,每个模块负责一部分工作,这样可以让团队成员更专注于自己的模块,提高工作效率。

4.1.3 异步处理

尽量避免同步调用,而是使用异步处理的方式来提高系统的并发能力。例如,可以使用消息队列(如KafkaRabbitMQ等)来处理异步请求和响应。

4.1.4 负载均衡

通过负载均衡器(如Nginx、HAProxy等)将请求均匀地分配到多个服务器或实例上,确保每个服务器或实例都能够处理适当的负载。

4.1.5 弹性伸缩

使用自动化的工具和服务,根据系统的负载情况动态调整硬件资源配置。例如,当系统负载增加时,可以自动增加服务器或实例的数量来应对流量压力。

4.1.6 流量控制

通过限制某个接口的请求频率等方式,防止恶意请求或异常请求导致系统崩溃。可以使用限流算法(如令牌桶算法、漏桶算法等)来实现流量控制。

4.1.7 监控与报警

建立完善的监控体系,实时监控系统的性能指标和日志信息。当系统出现异常或负载过高时,及时触发报警机制以便快速响应和处理。

4.2 底层数据库设计

4.2.1 数据库分区

将数据库分成多个部分,每个部分处理一部分请求,从而提高系统的并发能力和数据一致性的保证。例如,可以使用水平分区或垂直分区的方式将数据库拆分为多个子库或子表。

4.2.2 读写分离

通过读写分离的方式提高数据库的并发处理能力。将读操作和写操作分离到不同的数据库实例上,以减轻单个数据库实例的负担。

4.2.3 缓存策略

使用分布式缓存(如RedisMemcached等)来存储热点数据,减少对数据库的直接访问压力。缓存策略可以包括缓存预热、缓存更新、缓存失效等。

4.2.4 索引优化

对数据库表建立适当的索引以加快查询速度。但需要注意索引过多或不当的索引会拖慢写操作和占用额外的存储空间。

4.2.5 事务管理

在高并发场景下,需要合理管理数据库事务以确保数据的一致性和完整性。可以使用分布式事务管理器来协调多个数据库实例之间的事务处理。

4.2.6 数据备份与恢复

定期备份数据库数据,并确保备份数据的安全性和可用性。同时,制定详细的灾难恢复计划以便在系统崩溃时迅速恢复运行。

4.2.7 数据库扩展性

选择具有良好扩展性的数据库系统,如NoSQL数据库(如CassandraMongoDB等),以便在需要时轻松地进行横向扩展。

承载百万TPS流量的后端服务架构设计和底层数据库设计需要综合考虑多个方面以确保系统的稳定性、可扩展性和高性能。通过分层架构、模块化设计、异步处理、负载均衡、弹性伸缩、流量控制等手段来优化后端服务架构;通过数据库分区、读写分离、缓存策略、索引优化、事务管理、数据备份与恢复等手段来优化底层数据库设计。这些措施将共同提升系统的并发处理能力和响应速度,从而满足高并发场景下的业务需求。

5.承载千万TPS流量的后端服务优化架构设计

设计一个能够承载千万TPS(每秒传输次数)流量的后端服务优化架构是一个极具挑战性的任务,这需要对系统架构、数据库设计、缓存策略、负载均衡、弹性伸缩、流量控制等多个方面进行深入的优化和整合。以下是一个基于当前技术趋势和实践经验的设计思路。

5.1 整体架构设计

5.1.1 分层架构

采用分层架构,将系统划分为前端、中间层、业务逻辑层、数据访问层等多个层次。每个层次负责不同的职责,降低层次间的耦合度,提高系统的可扩展性和可维护性。

5.1.2 微服务架构

将业务逻辑层拆分为多个独立的微服务,每个微服务负责一个特定的业务功能。通过微服务架构,可以实现服务的独立部署、扩展和升级,提高系统的灵活性和可伸缩性。

5.1.3 容器化部署

使用Docker等容器化技术来部署和管理微服务实例。容器化部署可以提高资源的利用率,简化服务的部署和升级过程,同时便于实现服务的动态扩展和弹性伸缩。

5.2 数据库设计优化

5.2.1 分布式数据库

采用分布式数据库系统来存储和管理数据,如TiDB、CockroachDB等。这些数据库系统支持水平扩展和分布式事务,能够应对高并发场景下的数据访问需求。

5.2.2 数据分片

对数据库进行数据分片,将数据分散到多个数据库实例或节点上,以提高数据库的并发处理能力和查询性能。数据分片策略可以根据业务需求和访问模式进行定制。

5.2.3 读写分离

实现数据库的读写分离,将读操作和写操作分离到不同的数据库实例或节点上,以减轻单个数据库实例的负担,提高系统的并发处理能力。

5.2.4 缓存策略

在数据库之前添加缓存层,如Redis、Memcached等,以减少对数据库的直接访问压力。通过合理的缓存策略(如LRU、LFU等),可以显著提高系统的响应速度和吞吐量。

5.3 负载均衡与弹性伸缩

5.3.1 负载均衡

在前端和后端之间添加负载均衡器,如Nginx、HAProxy等,将请求均匀地分发到多个后端服务实例上,以实现负载的均衡分配。负载均衡器还可以根据后端服务实例的健康状态进行智能调度,确保系统的稳定性和可靠性。

5.3.2 弹性伸缩

使用Kubernetes等容器编排工具来实现服务的自动扩展和收缩。根据系统的负载情况动态调整服务实例的数量,以应对流量的波动和突增。通过弹性伸缩,可以确保系统在高并发场景下仍然能够稳定运行。

5.4 流量控制与限流

5.4.1 流量控制

在系统入口层添加流量控制机制,如令牌桶算法、漏桶算法等,以限制请求的处理速率。通过流量控制,可以防止恶意攻击或异常请求导致系统崩溃。

5.4.2 限流策略

制定合理的限流策略,根据业务需求和系统性能对请求进行限速处理。可以对不同类型的请求(如API请求、页面访问请求等)设置不同的限流阈值和策略。

5.5 监控与报警

5.5.1 监控体系

建立完善的监控体系,对系统的各项性能指标(如CPU使用率、内存使用率、响应时间、吞吐量等)进行实时监控。通过监控数据可以及时发现系统的异常情况并进行处理。

5.5.2 报警机制

当系统性能指标超过预设阈值或出现异常情况时,及时触发报警机制。报警信息可以通过邮件、短信、钉钉等多种方式发送给相关人员,以便快速响应和处理问题。

5.6 其他优化措施

5.6.1 代码优化

对业务逻辑层的代码进行优化,提高代码的执行效率。可以采用高效的算法和数据结构,减少不必要的计算和IO操作。

5.6.2 异步处理

对于一些耗时的操作(如文件上传、图像处理等),可以采用异步处理的方式来提高系统的并发处理能力。通过消息队列等中间件将异步任务分发给后台服务进行处理。

5.6.3 静态资源优化

对于静态资源(如图片、CSS、JavaScript等),可以使用CDN加速、缓存策略等手段来优化加载速度,减轻服务器的负担。

综上所述,设计一个能够承载千万TPS流量的后端服务优化架构需要从整体架构、数据库设计、负载均衡、弹性伸缩、流量控制等多个方面进行深入的优化和整合。通过合理的架构设计和优化措施,可以确保系统在高并发场景下仍然能够稳定运行并提供优质的服务。

6.高并发系统中的数据访问层服务化设计

在高并发系统中,数据访问层的服务化设计是提高系统可扩展性、可靠性和性能的关键。以下是关于高并发系统中数据访问层服务化设计的一些建议。

6.1 服务化设计概述

服务化设计是指将系统中的各个功能模块拆分为独立的服务,每个服务负责特定的业务逻辑和数据访问。在高并发系统中,数据访问层的服务化设计可以确保系统能够高效地处理大量数据访问请求,同时降低各个服务之间的耦合度,提高系统的可维护性和可扩展性。

6.2 数据访问层服务化设计原则

6.2.1 单一职责原则

每个服务应该只负责一个特定的业务功能或数据访问需求,避免服务之间的职责重叠。

6.2.2 松耦合原则

服务之间应该通过轻量级的通信协议(如HTTP、gRPC等)进行交互,避免直接依赖和调用,以降低服务之间的耦合度。

6.2.3 高内聚原则

每个服务内部应该保持高内聚性,即服务内部的功能模块应该紧密相关,共同实现一个特定的业务目标。

6.2.4 可扩展性原则

数据访问层的服务设计应该考虑未来的扩展需求,便于通过增加服务实例或优化服务性能来应对更高的并发访问量。

6.3 数据访问层服务化设计实践

6.3.1 数据库拆分

根据业务需求和数据访问模式,将数据库拆分为多个独立的数据库实例或分片,以降低单个数据库的负担并提高并发处理能力。

6.3.2 读写分离

实现数据库的读写分离,将读操作和写操作分离到不同的数据库实例或节点上,以提高数据库的并发处理能力。

6.3.3 缓存策略

在数据访问层添加缓存机制,如Redis、Memcached等,以减少对数据库的直接访问压力。通过合理的缓存策略,可以显著提高系统的响应速度和吞吐量。

6.3.4 服务注册与发现

使用服务注册与发现机制,如Consul、Eureka等,来管理数据访问层的服务实例。这样可以在服务实例增加或减少时自动更新服务列表,确保系统能够正确地路由请求到可用的服务实例上。

6.3.5 负载均衡

在数据访问层添加负载均衡机制,如Nginx、HAProxy等,将请求均匀地分发到多个服务实例上。这样可以避免单个服务实例过载,提高系统的稳定性和可靠性。

6.3.6 监控与报警

对数据访问层的服务进行实时监控,包括服务状态、响应时间、吞吐量等指标。当服务出现异常或性能指标超过阈值时,及时触发报警机制以便快速响应和处理问题。

6.3.7 限流与熔断

为数据访问层的服务设置限流和熔断机制,以防止恶意请求或异常请求导致服务崩溃。当服务负载过高或请求处理失败率达到一定阈值时,可以自动触发限流或熔断机制,以保护服务的稳定性和可靠性。

高并发系统中的数据访问层服务化设计是一个复杂而关键的任务。通过遵循单一职责、松耦合、高内聚和可扩展性等设计原则,并采用数据库拆分、读写分离、缓存策略、服务注册与发现、负载均衡、监控与报警以及限流与熔断等实践方法,可以构建一个高效、稳定、可靠的数据访问层服务化架构。这将有助于提升系统的并发处理能力、降低延迟、提高用户体验并保障业务的连续性。

7.高并发系统将数据访问层服务化的RPC性能问题分析

将“后端服务中调用JDBC层去访问MySQL数据库,实现数据的存储”改为“将JDBC层访问MySQL数据库独立为数据服务,调用方通过RPC访问这个数据服务,从而访问MySQL数据库,实现数据的存储”,这样数据服务可以实现分层架构和可扩展化,但是RPC会带来性能问题,会不会影响服务的TPS

JDBC层访问MySQL数据库独立为数据服务,并通过RPC调用这个数据服务来实现数据存储,确实可以实现服务的分层架构和可扩展化。然而,RPC调用本身确实可能带来性能问题,这可能会影响服务的TPS(每秒传输次数)。以下是对这一问题的详细分析

7.1 RPC带来的性能问题

7.1.1 网络延迟

RPC调用是远程调用,涉及到网络传输。网络延迟是不可避免的,尤其是在高并发情况下,网络延迟可能会成为性能瓶颈。

7.1.2 序列化/反序列化开销

RPC调用需要将请求和响应数据进行序列化/反序列化,这个过程会有一定的开销。如果数据量较大,这个开销会更加明显。

7.1.3 服务调用开销

每次RPC调用都会有一定的服务调用开销,包括建立连接、发送请求、接收响应等。这些开销在高并发情况下会累积起来,影响整体性能。

7.2 RPC对TPS的影响

7.2.1 降低吞吐量

由于上述的性能问题,RPC调用可能会降低服务的吞吐量。在相同的时间内,能够处理的请求数量会减少,从而导致TPS下降。

7.2.2 增加延迟

RPC调用会增加请求的响应时间,因为需要等待网络传输、序列化/反序列化和服务调用等过程完成。这会导致服务的平均延迟增加。

7.3 缓解措施

为了缓解RPC调用带来的性能问题,可以采取以下措施。

7.3.1 优化RPC框架

选择一个高性能的RPC框架,并对其进行优化配置,如调整序列化方式、连接池大小等。

7.3.2 减少数据传输量

尽量减少每次RPC调用传输的数据量,只传输必要的数据。可以通过数据压缩、分页查询等方式来降低传输开销。

7.3.3 使用异步调用

采用异步RPC调用方式,让客户端在发出请求后无需等待响应即可继续执行其他任务。这可以提高客户端的并发处理能力。

7.3.4 缓存机制

在数据服务层添加缓存机制,如Redis、Memcached等,以减少对MySQL数据库的直接访问压力。缓存可以显著降低RPC调用的频率和数据传输量。

7.3.5 负载均衡

在数据服务层部署负载均衡器,将请求均匀地分发到多个服务实例上,以避免单个服务实例过载。

7.3.6 网络优化

优化网络拓扑结构,减少网络延迟和抖动。使用高带宽低延迟的网络连接可以提高RPC调用的性能。

7.3.7 监控和调优

RPC调用的性能进行实时监控,及时发现并处理性能瓶颈。根据监控数据动态调整RPC调用的参数和配置,以适应不同的业务场景和流量模式。

综上所述,将JDBC层访问MySQL数据库独立为数据服务并通过RPC调用确实可以实现服务的分层架构和可扩展化,但RPC调用本身可能会带来性能问题,从而影响服务的TPS。然而,通过采取上述缓解措施,可以在一定程度上降低这种影响,使服务仍然能够保持较高的性能和吞吐量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

架构随笔录

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值