任务:hook函数与CAM(class activation map, 类激活图)
任务简介:学习pytorch的hook函数机制以及CAM可视化算法
详细说明:深入学习了解pytorch的hook函数运行机制,介绍pytorch中提供的4种hook函数
- torch.Tensor.register_hook(hook)
- torch.nn.Module.register_forward_hook
- torch.nn.Module.register_forward_pre_hook
- torch.nn.Module.register_backward_hook
最后,介绍CAM可视化及其改进算法Grad-CAM
实现任务
采用torch.nn.Module.register_forward_hook机制实现AlexNet第一个卷积层输出特征图的可视化,并将/torchvision/models/alexnet.py中第28行改为:nn.ReLU(inplace=False),观察inplace=True与inplace=False的差异。
知识点
Hook函数
Hook函数机制:不改变主体,实现额外功能,像一个挂件,挂钩,hook
- torch.Tensor.register_hook(hook)
- torch.nn.Module.register_forward_hook
- torch.nn.Module.register_forward_pre_hook
- torch.nn.Module.register_backward_hook
Tensor.register_hook
- 功能:注册一个反向传播hook函数
- Hook函数仅一个输入参数,为张量的梯度
使用方法:.register_hook(hook_fn),其中hook_fn为一个用户自定义的函数,输出为一个 Tensor 或者是 None (None 一般用于直接打印梯度)。反向传播时,梯度传播到变量 z,再继续向前传播之前,将会传入hook_fn。如果hook_fn的返回值是 None,那么梯度将不改变,继续向前传播,如果hook_fn的返回值是Tensor类型,则该Tensor将取代 z 原有的梯度,向前传播。
# ----------------------------------- 1 tensor hook 1
flag = 0
flag = 1
if flag:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
a_grad = list()
def grad_hook(grad):
a_grad.append(grad)
handle = a.register_hook(grad_hook)
y.backward()
print("gradient:", w.grad, x.grad, a.grad, b.grad, y.grad)
print("a_grad[0]:", a_grad[0])
handle.remove()
输出:
gradient: tensor([5.]) tensor([2.]) None None None
a_grad[0]: tensor([2.])
# ----------------------------------- 2 tensor hook 2
flag = 0
flag = 1
if flag:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
a_grad = list()
def grad_hook(grad):
grad *= 2
return grad * 3
handle = w.register_hook(grad_hook)
y.backward()
print("w.grad:", w.grad)
handle.remove()
输出:w.grad: tensor([30.])
Module.register_forward_hook
- 功能:注册module的前向传播hook函数
- 参数:
• module: 当前网络层
• input:当前网络层输入数据
• output:当前网络层输出数据
Module.register_forward_pre_hook
- 功能:注册module的前向传播前的hook函数
- 参数:
• module: 当前网络层
• input:当前网络层输入数据
Module.register_backward_hook
- 功能:注册module的反向传播的hook函数
- 参数:
• module: 当前网络层
• grad_input:当前网络层输入梯度数据
• grad_output:当前网络层输出梯度数据
小实验
# --------------------------- 3 Module.register_forward_hook and pre hook
# flag = 0
flag = 1
if flag:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 2