【深度之眼】【Pytorch打开第12天】:hook函数与CAM可视化

本文深入探讨了Pytorch中的hook函数机制,包括Tensor.register_hook、Module.register_forward_hook、Module.register_forward_pre_hook和Module.register_backward_hook。文章通过实例展示了如何使用hook函数实现AlexNet第一个卷积层特征图的可视化,并对比了inplace=True和inplace=False的影响。此外,文章还介绍了CAM和Grad-CAM两种类激活图方法,解释了它们的工作原理以及在模型分析中的应用。
摘要由CSDN通过智能技术生成

任务:hook函数与CAM(class activation map, 类激活图)

任务简介:学习pytorch的hook函数机制以及CAM可视化算法

详细说明:深入学习了解pytorch的hook函数运行机制,介绍pytorch中提供的4种hook函数

  1. torch.Tensor.register_hook(hook)
  2. torch.nn.Module.register_forward_hook
  3. torch.nn.Module.register_forward_pre_hook
  4. torch.nn.Module.register_backward_hook
    最后,介绍CAM可视化及其改进算法Grad-CAM

实现任务

采用torch.nn.Module.register_forward_hook机制实现AlexNet第一个卷积层输出特征图的可视化,并将/torchvision/models/alexnet.py中第28行改为:nn.ReLU(inplace=False),观察inplace=True与inplace=False的差异。


知识点

Hook函数

Hook函数机制:不改变主体,实现额外功能,像一个挂件,挂钩,hook

  1. torch.Tensor.register_hook(hook)
  2. torch.nn.Module.register_forward_hook
  3. torch.nn.Module.register_forward_pre_hook
  4. torch.nn.Module.register_backward_hook

Tensor.register_hook

  • 功能:注册一个反向传播hook函数
  • Hook函数仅一个输入参数,为张量的梯度

    使用方法:.register_hook(hook_fn),其中hook_fn为一个用户自定义的函数,输出为一个 Tensor 或者是 None (None 一般用于直接打印梯度)。反向传播时,梯度传播到变量 z,再继续向前传播之前,将会传入hook_fn。如果hook_fn的返回值是 None,那么梯度将不改变,继续向前传播,如果hook_fn的返回值是Tensor类型,则该Tensor将取代 z 原有的梯度,向前传播。

# ----------------------------------- 1 tensor hook 1
flag = 0
flag = 1
if flag:
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    a_grad = list()

    def grad_hook(grad):
        a_grad.append(grad)

    handle = a.register_hook(grad_hook)

    y.backward()

    print("gradient:", w.grad, x.grad, a.grad, b.grad, y.grad)
    print("a_grad[0]:", a_grad[0])

    handle.remove()
    

输出:

gradient: tensor([5.]) tensor([2.]) None None None
a_grad[0]: tensor([2.])

# ----------------------------------- 2 tensor hook 2
flag = 0
flag = 1
if flag:
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    a_grad = list()


    def grad_hook(grad):
        grad *= 2
        return grad * 3


    handle = w.register_hook(grad_hook)

    y.backward()

    print("w.grad:", w.grad)
    handle.remove()
    

输出:w.grad: tensor([30.])

Module.register_forward_hook

  • 功能:注册module的前向传播hook函数
  • 参数:
    • module: 当前网络层
    • input:当前网络层输入数据
    • output:当前网络层输出数据

Module.register_forward_pre_hook

  • 功能:注册module的前向传播前的hook函数
  • 参数:
    • module: 当前网络层
    • input:当前网络层输入数据

Module.register_backward_hook

  • 功能:注册module的反向传播的hook函数
  • 参数:
    • module: 当前网络层
    • grad_input:当前网络层输入梯度数据
    • grad_output:当前网络层输出梯度数据

小实验
在这里插入图片描述

# --------------------------- 3 Module.register_forward_hook and pre hook
# flag = 0
flag = 1
if flag:
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(1, 2
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值