Havel定理

给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化。

可图化的判定比较简单:d1+d2+...dn=0(mod2)。关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环。

可简单图化的判定,有一个Havel定理,是说: 我们把序列排成不增序,即d1>=d2>=...>=dn,则d可简单图化当且仅当d'=(d2-1, d3-1, ... d(d1+1)-1, d(d1+2), d(d1+3), ... dn)可简单图化。这个定理写起来麻烦,实际上就是说,我们把d排序以后,找出度最大的点(设度为d1),把它和度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况。

定理的简单证明如下:

(<=)若d'可简单图化,我们只需把原图中的最大度点和d'中度最大的d1个点连边即可,易得此图必为简单图。

(=>)若d可简单图化,设得到的简单图为G。分两种情况考虑:

(a)若G中存在边(V1,V2), (V1,V3), ...(V1,V(d1+1)),则把这些边除去得简单图G',于是d'可简单图化为G'

(b)若存在点Vi,Vj使得i<j, (V1,Vi)不在G中,但(V1,Vj)在G中。这时,因为di>=dj,必存在k使得(Vi, Vk)在G中但(Vj,Vk)不在G中。这时我们可以令GG=G-{(Vi,Vk),(V1,Vj)}+{(Vk,Vj),(V1,Vi)}。GG的度序列仍为d,我们又回到了情况(a)。

Q.E.D
题目:

给定n个点,已知每个点的度数

       求一种方案,使得这n个点构成一个无向图

       不能连重边或者自环,保证有解

题目比较水,但是因为我以前曾构思过一个有向图的还原,而且还有边权限制,所以压根没想到要用贪心。。。

以前我以为图论的算法我应该了解了个大概,现在看来还有很多基本定理我不知道,以后要好好研习论文了。

var b:array[1..2,1..1024]of longint;
    d:array[1..2,0..500]of longint;
    n,m1:longint;
procedure inf;
begin
 assign(input,'recover.in');reset(input);
 assign(output,'recover.out');rewrite(output)
end;
procedure ouf;
begin
 close(input);close(output)
end;
procedure origin;
var i:longint;
begin
 m1:=1;
 while m1<n+2 do m1:=m1<<1;m1:=m1-1;
 for i:=1 to n do b[1,i+m1]:=i
end;
function max(i,x,y:longint):longint;
begin
 if d[i,x]>d[i,y] then exit(x) else exit(y)
end;
procedure change(i,x,w:longint);
begin
 d[i,x]:=w;x:=(x+m1)>>1;
 while x<>0 do begin
  b[i,x]:=max(i,b[i,x<<1],b[i,x<<1+1]);
  x:=x>>1
 end
end;
procedure init;
var i,x,d1:longint;
begin
 readln(n);
 origin;
 for i:=1 to n do begin readln(x);change(1,i,x) end;
 while d[1,b[1,1]]<>0 do begin
  x:=b[1,1];d1:=d[1,x];
  change(1,x,0);b[2]:=b[1];d[2]:=d[1];
  for i:=1 to d1 do begin
   writeln(x,' ',b[2,1]);
   change(1,b[2,1],d[1,b[2,1]]-1);change(2,b[2,1],0);
  end
 end
end;
begin
 inf;
 init;
 ouf
end.


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值