密码学-数学基础(二)

密码学的数学基础

有限域

  • 群、环、域三者的区别
    • 群是两个元素进行运算得到一个新的元素,需要满足的公理:
      • 封闭性、结合率、单位元、逆元
      • 交换群多一个交换律
    • 环是在交换群的基础上添加一种运算 .(不同于代数乘法),需要满足的公理:
      • 封闭性、结合律、单位元、逆元、交换律
      • 交换环多一个乘法的交换律
    • 域是在交换环的基础上,多了二元除法运算,并且对于每一个非零元素都存在乘法逆元
  • 密码学中为何采用有限域(明文、密钥、密文必须属于某个有限域)
    • 所有的加密算法都涉及到整数集上的算数运算,必须使用定义在域上的运算
    • 密文的数量是有限的,无限域存在浪费
  • 为什么密码学采用GF(2^n)形式的有限域,而不采用GF§形式的有限域
    • 因为提高实用性和效率,该形式与计算机中信息表达方式二进制能够表达的信息一一对应,即整数集的范围为0~2^n-1

模运算

  • 加法 [(a mod n)+(b mod n)] mod n = (a+b) mod n
  • 减法 [(a mod n)-(b mod n)] mod n = (a-b) mod n
  • 乘法 [(a mod n)*(b mod n)] mod n = (a*b) mod n

多项式模运算

  • 定义
    • 遵循基本代数规则中的普通多项式运算规则
    • 系数运算以p为模
    • 如果乘法的结果是次数大于n-1的多项式,那么必须将其除以某个次数为n的既约多项式m(x)并取余式
  • 功能(为什么采用模运算)
    • 在此运算基础上的集合S为有限域

数论的基本知识

  • 素数

    • 任何正整数可由素数的乘积来表示
  • 费马小定理

    • 若p是素数,a是正整数且不能被p整除,则 a ( p − 1 ) ≡ 1 m o d   p a^{(p-1)} \equiv 1 mod\space p a(p1)1mod p
  • 欧拉函数

    • ϕ ( n ) \phi(n) ϕ(n)指小于n且与n互素的正整数的个数
    • 对于素数p有 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1
    • 对于两个素数p和q且 p!=q,那么对于n=pq,有
      • ϕ ( n ) = ϕ ( p q ) = ϕ ( q ) ∗ ϕ ( p ) = ( p − 1 ) ∗ ( q − 1 ) \phi(n)=\phi(pq)=\phi(q)*\phi(p)=(p-1)*(q-1) ϕ(n)=ϕ(pq)=ϕ(q)ϕ(p)=(p1)(q1)
  • 欧拉定理

    • 对于任意互素的a和n,有 α ϕ ( n ) ≡ m o d   n \alpha ^{\phi(n)} \equiv mod\space n αϕ(n)mod n
    • 推论给定两个素数pq,整数n=qp,对于小于n的任意正整数m(0<m<n),有
      • m ϕ ( n ) + 1 ≡ m ( p − 1 ) ( q − 1 ) + 1 ≡ m   m o d   n m^{\phi(n)+1}\equiv m^{(p-1)(q-1)+1}\equiv m \space mod \space n mϕ(n)+1m(p1)(q1)+1m mod n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值