最小的K个数
输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。
输入
int[] input:待搜索的数组 ;
int k:需要找出最小的数量
输出
当k大于input长度时,返回空(非null);当k小于input长度时,返回input中最小的k个数字
思路
- 最粗暴方式,对数组所有元素排序(快排)
- 利用冒泡排序的思想,冒泡k个元素
- 划分思想,快排,每一次划分就会有一个数字位于以数组从小到达排列的的最终位置index
- 最大堆(TreeSet)
对所有元素进行排序
package com.genge.offer;
import java.util.ArrayList;
import java.util.Arrays;
/**
* Created by Genge on 2016-06-27.
*/
public class GetLeastNumbers_Solution {
public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
ArrayList<Integer> result = new ArrayList<Integer>();
if (input == null || input.length <k) {
return result;
}
Arrays.sort(input);//快速排序
for (int i =0;i<k;i++) {
result.add(input[i]);
}
return result;
}
}
- 冒泡思想(或者选择排序)
package com.genge.offer;
import java.util.ArrayList;
import java.util.Arrays;
/**
* Created by Genge on 2016-06-27.
*/
public class GetLeastNumbers_Solution {
public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
ArrayList<Integer> result = new ArrayList<Integer>();
if (input == null || input.length <k) {
return result;
}
/* Arrays.sort(input);
for (int i =0;i<k;i++) {
result.add(input[i]);
}*/
for (int i = 0 ;i<k;i++) {
int m = i ;
for (int j =i+1;j<input.length;j++) {
if (input[j] < input[m]) {
m = j;
}
}
int temp = input[i];
input[i] = input[m];
input[m] = temp;
result.add(input[i]);
}
return result;
}
}
划分思想
- 利用快速排序划分的思想,每一次划分就会有一个数字位于以数组从小到达排列的的最终位置index;
- 位于index左边的数字都小于index对应的值,右边都大于index指向的值;
- 所以,当index>k-1时,表示k个最小数字一定在index的左边,此时,只需要对index的左边进行划分即可;
- 当index < k - 1时,说明index及index左边数字还没能满足k个数字,需要继续对k右边进行划分;
代码如下:
package com.genge.offer;
import java.util.ArrayList;
/**
* Created by Genge on 2016-06-27.
*/
public class GetLeastNumbers_Solution {
public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
ArrayList<Integer> result = new ArrayList<Integer>();
if (input == null || input.length <k) {
return result;
}
int low = 0;
int high = input.length - 1;
int index = partition(input, low, high);
while (index != k - 1) {
if (index > k - 1) {
high = index - 1;
} else {
low = index + 1;
}
index = partition(input, low, high);
}
for(int i = 0; i < k; i++){
result.add(input[i]);
}
return result;
}
//划分操作
private int partition(int[] input, int start, int end) {
int pivot = input[start];
while (start < end) {
while (start < end && input[end] >= pivot) {
end--;
}
input[start] = input[end];
while (start < end && input[start] <= pivot) {
start++;
}
input[end] = input[start];
}
input[start] = pivot;
return start;
}
}
这个算法虽然有代表性,但是居然不给通过,复杂度有点高啊:
运行超时:您的程序未能在规定时间内运行结束,请检查是否循环有错或算法复杂度过大。
最大堆(TreeSet)
- 可以先创建一个大小为k的数据容器来存储最小的k个数字,从输入的n个整数中一个一个读入放入该容器中,如果容器中的数字少于k个,按题目要求直接返回空;
- 如果容器中已有k个数字,而数组中还有值未加入,此时就不能直接插入了,而需要替换容器中的值。按以下步骤进行插入:
- 先找到容器中的最大值;
- 将待查入值和最大值比较,如果待查入值大于容器中的最大值,则直接舍弃这个待查入值即可;
- 如果待查入值小于容器中的最小值,则用这个待查入值替换掉容器中的最大值;
- 重复上述步骤,容器中最后就是整个数组的最小k个数字。
对于这个容器的实现,我们可以使用最大堆的数据结构,最大堆中,根节点的值大于它的子树中的任意节点值。Java
中的TreeSet
类实现了红黑树的功能,它底层是通过TreeMap
实现的,TreeSet
中的数据会按照插入数据自动升序排列(按自然顺序)。因此我们直接将数据依次放入到TreeSet
中,数组就会自动排序。
package com.genge.offer;
import java.util.ArrayList;
import java.util.TreeSet;
/**
* Created by Genge on 2016-06-27.
*/
public class GetLeastNumbers_Solution {
//最大堆
public static ArrayList<Integer> GetLeastNumbers_Solution3(int [] input, int k) {
if(input == null)
return null;
ArrayList<Integer> list = new ArrayList<Integer>(k);
if(k > input.length)
return list;
TreeSet<Integer> tree = new TreeSet<Integer>();
for(int i = 0 ; i < input.length; i++){
tree.add(input[i]);
}
int i = 0;
for(Integer elem : tree){
if(i >= k)
break;
list.add(elem);
i++;
}
return list;
}
}
时间复杂度为O(nlogn),优点:
1. 不会改变原来数组;
2. 这种思想,适合处理海量数据,特别是n大k小的情况。在处理海量数据的时候,受内存限制,数据可能不能一次全部读入内存,此时用这种方式也很好处理,只要想每次读入一些数据,与我们的容器中最大值比较,看是否需要进行替换操作。
缺点就是:
TreeSet不允许重复数据,因为TreeSet的底层是TreeMap实现,是将TreeSet添加的内容作为TreeMap的key值来存储,也就不能存在重复数据。由于这种限制,这就对我们的输入数组有要求,但我们可以通过自己实现最大堆或优化TreeSet来实现兼容存在重复数字的情况。