HW140701
码龄7年
  • 1,340,932
    被访问
  • 256
    原创
  • 1,651
    排名
  • 890
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2015-10-08
博客简介:

HW140701的博客

博客描述:
个人网站:https://www.stubbornhuang.com/
查看详细资料
  • 6
    领奖
    总分 2,146 当月 93
个人成就
  • 博客专家认证
  • 获得710次点赞
  • 内容获得1,275次评论
  • 获得2,823次收藏
  • GitHub 获得548Stars
创作历程
  • 5篇
    2022年
  • 41篇
    2021年
  • 48篇
    2020年
  • 37篇
    2019年
  • 17篇
    2018年
  • 75篇
    2017年
  • 52篇
    2016年
成就勋章
TA的专栏
  • TensorRT
    6篇
  • 书籍翻译
    1篇
  • 开发工具
  • Git
    1篇
  • GUI
  • ThreeJS
    3篇
  • Pytorch
    3篇
  • Duilib
    4篇
  • UnrealEngine
    4篇
  • Go
  • WPF
    1篇
  • 人工智能
  • 姿态识别与三维姿态估计
    6篇
  • 个人建站
    1篇
  • 三维图形处理算法
  • OpenGL
    5篇
  • Legancy OpenGL / 固定渲染管线
    12篇
  • Modern OpenGL / 可编程渲染管线
    8篇
  • VTK
    22篇
  • C++
    126篇
  • C++智能指针
    2篇
  • C++基础
  • C++多线程
    5篇
  • C++网络编程
  • VS/VC/MFC
    39篇
  • 计算机图形图像
    23篇
  • Python
    28篇
  • hacker/cracker
    1篇
  • Windows技术
    3篇
  • Socket
    1篇
  • OpenCV
    13篇
  • 数据结构
    3篇
  • LeetCode
    5篇
  • 三维模型重建
  • 另外的世界
    2篇
  • QT
    1篇
  • FFmpeg
    11篇
  • Unity3D
    1篇
  • 穷建站
    2篇
  • 其它
    17篇
  • Android
    1篇
  • Linux
    6篇
  • Eigen
    1篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    目标检测深度学习神经网络pytorch
  • 服务器
    linux
China,yyds

欢迎大家访问我的个人网站 : https://www.stubbornhuang.com,更多干货等着您来开箱哦!

我的个站 : https://www.stubbornhuang.com

计算图形学与计算几何经典和必读书籍整理: https://github.com/HW140701/Book-list-of-computational-geometry-and-computer-graphics

GitHub : https://github.com/HW140701

计算几何与计算机图形交流群 ,扫描下方二维码入群!

ComputerGraphicsQQGroupQrcode.png Map
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

C++ - 使用std::chrono获取当前秒级/毫秒级/微秒级/纳秒级时间戳

1 使用std::chrono获取当前秒级/毫秒级/微秒级/纳秒级时间戳1.1 当前时间戳获取方法先使用std::chrono获取当前系统时间,然后将当前系统时间转换为纪元时间std::time_t类型,之后使用std::localtime对std::time_t类型转换为本地时间结构体std::tm类型,最后使用strftime对时间进行格式化输出。其中std::tm该结构包含了一个被分解为以下各部分的日历时间struct tm { int tm_sec; // 秒,范围从
原创
发布博客 2022.05.27 ·
336 阅读 ·
0 点赞 ·
1 评论

FFmpeg - ./configure编译参数全部总结和整理

1 FFmpge编译参数本文对FFmpeg4.4.1的./configure的所有编译参数进行了简要说明。在Linux系统上编译FFmpge时总是不太明白应该使用哪一些编译参数,这里以FFmpge4.4.1版本为例,对FFmpge的所有可选编译参数进行总结和整理。1.1 Help options 帮助选项参数参数作用–help打印显示帮助信息–quiet禁止显示信息输出–list-decoders显示所有可用的解码器–list-encoders显示所有可用
原创
发布博客 2022.04.29 ·
308 阅读 ·
0 点赞 ·
0 评论

Visual Studio – 借助远程Linux服务器环境在Visual Studio中编写和远程调试Linux C++程序

1 环境准备1.1 安装使用C++的Linux开发的工具集首先需要在Visual Studio Installer中安装使用C++的linux开发的工具集等待使用C++的Linux开发的工具集安装完成,并重启Visual Studio。1.2 准备可远程的Linux服务器以及在远程服务器安装远程调试环境1.2.1 明确Linux服务器的cpu架构首先需要清楚该服务器的cpu是x_86、x_64还是arm,这在之后的Visual Studio中需要选择编译平台。1.2.2 配置远程Linux服
原创
发布博客 2022.03.14 ·
2418 阅读 ·
2 点赞 ·
0 评论

Mediapipe – 将Mediapipe HolisticTracking封装成动态链接库dll/so,实现在桌面应用中嵌入全身关节点识别、手势识别、抬手放手检测识别功能

1 Mediapipe HolisticTrackingMediapipe Holistic Tracking可对身体,面部和手部的共543个关键点进行实时跟踪检测,其中包含面部468个关节点,身体33个关键点,以及每只手分别21个关键点。所有关键点的存储顺序以及标注对照索引图可参考我的另一篇文章:https://www.stubbornhuang.com/1916/1.1 封装Mediapipe Holistic Tracking的目的之前尝试对Mediapipe的手部跟踪功能HandTrack
原创
发布博客 2022.01.20 ·
1102 阅读 ·
2 点赞 ·
25 评论

书籍翻译 - Fundamentals of Computer Graphics, Fourth Edition 虎书第四版中文翻译

1 Fundamentals of Computer Graphics, Fourth Edition 中文翻译随缘翻译,不喜勿喷。第1章:Introduction 中文翻译 : https://www.stubbornhuang.com/1813/第2章:Miscellaneous Math 中文翻译:https://www.stubbornhuang.com/1821/第3章:Raster Images 中文翻译:https://www.stubbornhuang.com/1822/第4章:
原创
发布博客 2022.01.08 ·
721 阅读 ·
1 点赞 ·
1 评论

Pytorch - 一文搞懂如何使用Pytorch构建与训练自定义深度学习网络(数据集自定义与加载,模型训练,模型测试,模型保存与加载)

使用Pytorch从零训练一个深度学习网络模型,常需要经过以下步骤:自定义数据集、加载自定义数据集、网络模型结构定义、定义损失函数、定义优化器、训练模型、测试模型、保存与加载模型等步骤。下文将详细阐述如何从零构建并训练一个深度学习网络模型的必要步骤。1 自定义数据集from torch.utils.data import Datasetclass torch.utils.data.Dataset表示数据集Dataset的抽象类,所有其他自定义的数据集都应该继承Dataset类,并且强制重写_le
原创
发布博客 2021.12.22 ·
680 阅读 ·
1 点赞 ·
0 评论

C++ - 使用ffmpeg读取视频旋转角度并使用OpenCV根据旋转角度对视频进行旋转复原

1 视频中的旋转信息以及为什么会有旋转信息Android或者ios等手机上录制视频时,由于重力感应或者录制视频的摆放方式的问题会导致录制的视频拥有旋转信息。如果是横屏录制(手机逆时针旋转90度),则录制的视频时不带角度的。如果是竖屏录制(正常的拿手机的姿势),此时的录制的视频的旋转角度是90度。如果再旋转90度,此时一般音量键和关屏键朝下,此时的视频的旋转角度是180。以此类推。所以在手机上的视频一般会有4种角度的视频,播放时,要对视频资源进行旋转后再进行播放,不然视频就会出现各种反转、倾倒。在http
原创
发布博客 2021.12.07 ·
402 阅读 ·
0 点赞 ·
0 评论

C++11 - 构建一个符合实际应用要求的线程池

1 什么是线程池线程池从本质上可以看做是一个多生产者多消费者的多线程应用。一个线程池包括以下四个基本组成部分:线程池管理器:用于创建并管理线程池,包括创建线程池,销毁线程池,添加新的工作线程,添加工作任务;工作线程:属于线程池中的线程,用于处理实际任务,在没有工作任务时等待,在任务队列不为空时主动获取任务并处理任务;任务接口:每个任务必须实现的接口,以供工作线程调度任务的执行;工作任务队列:用于存放需要处理的工作任务,采用先进先出机制;线程池根据机器性能预先创建多个工作线程,位于主线程的线
原创
发布博客 2021.11.08 ·
347 阅读 ·
1 点赞 ·
0 评论

TensorRT - 扩展TensorRT C++API的模型输入维度,增加Dims5,Dims6,Dims7,Dims8

1 TensorRT C++ API支持的模型输入维度在TensorRT 7.0及以上版本,我们通常使用以下语句指定输入维度: const std::string input_name = "input"; const std::string output_name = "output"; const int inputIndex = m_TensorRT_Engine->getBindingIndex(input_name.c_str()); const int o
原创
发布博客 2021.10.19 ·
380 阅读 ·
0 点赞 ·
0 评论

C++ - 函数返回多个返回值的方法总结

1 C++函数如何像python一样返回多个返回值使用过python的童鞋都知道,在python单个函数中可以返回多个函数值,比如:# -*- coding: utf-8 -*-def return_muliti_value(): return 1,'helloworld',[1,2,3]if __name__ == '__main__': a,b,c = return_muliti_value() print(a) print(b) print(c)
原创
发布博客 2021.10.13 ·
5078 阅读 ·
6 点赞 ·
0 评论

TensorRT - 喜大普奔,TensorRT8.2 EA起开始支持Einsum爱因斯坦求和算子

1 TensorRT 8.2 EA版本支持爱因斯坦求和算子EinsumNVIDIA在2021年10月6日发布的TensorRT新版本 8.2 Early Access版本终于开始支持爱因斯坦求和算子Einsum,这个消息真是为模型工业化部署的同学省了不少的时间。TensorRT中具体可支持的Onnx算子可参考:https://github.com/onnx/onnx-tensorrt/blob/master/docs/operators.md,但是目前Einsum也是支持大部分等式,暂不支持省略号和
原创
发布博客 2021.10.12 ·
922 阅读 ·
0 点赞 ·
0 评论

TensorRT - 使用torch普通算子组合替代torch.einsum爱因斯坦求和约定算子的一般性方法

1 问题:TensorRT暂时未实现einsum算子在ST-GCN中使用了爱因斯坦求和算子torch.einsum,def forward(self, x, A): assert A.size(0) == self.kernel_size x = self.conv(x) n, kc, t, v = x.size() x = x.view(n, self.kernel_size, kc//self.kernel_size, t, v)
原创
发布博客 2021.10.08 ·
654 阅读 ·
1 点赞 ·
5 评论

OpenCV - 将图片转换为深度学习模型输入格式,BGR通道转RGB,图片归一化,HWC转CHW

文章目录1 将图片转换为深度模型输入格式1.1 自行进行转换1.1.1 BGR通道转RGB通道1.1.2 图片归一化1.1.3 HWC转CHW1.2 使用cv::dnn::blobFromImage进行转换1.2.1 函数形式1.2.1 函数参数1 将图片转换为深度模型输入格式在C++进行人脸识别、目标检测的过程中,经常是以图片数据作为深度学习模型推理的输入数据的,但是从OpenCV读取的图片数据并不能直接用于深度学习模型的推理过程。首先,OpenCV读取图片默认使用的是BGR通道排列方式,而深度学
原创
发布博客 2021.09.23 ·
1020 阅读 ·
1 点赞 ·
0 评论

TensorRT - 使用trtexec工具转换模型、运行模型、测试网络性能

1 转换模型1.1 Caffe模型转换为TensorRT模型将Caffe模型转换为TensorRT模型,启动所有精度以达到最佳性能trtexec --deploy=mnist.prototex --model=mnist.caffe --saveEngine=mnist.trt --best将Caffe模型转换为TensorRT模型,启动所有精度以达到最佳性能,并跳过推理性能测试trtexec --deploy=mnist.prototex --model=mnist.caffe --s
原创
发布博客 2021.09.21 ·
2211 阅读 ·
3 点赞 ·
2 评论

TensorRT - 解决INVALID_ARGUMENT: getPluginCreator could not find plugin ScatterND version 1

1 问题出现最近在使用TensorRT 7.2.3.4中的自带的trtexec工具转换yolov3-spp的onnx模型为TensorRT模型文件时出现了找不到ScatterND插件的错误,错误大致如下:ModelImporter.cpp:135: No importer registered for op: ScatterND. Attempting to import as plugin.builtin_op_importers.cpp:3771: Searching for plugin: Sc
原创
发布博客 2021.09.19 ·
2268 阅读 ·
5 点赞 ·
7 评论

TensorRT - 自带工具trtexec的参数使用说明

本文以TensorRT-7.2.3.4说明自带工具trtexec工具的使用参数进行说明。1 trtexec的参数使用说明=== Model Options === --uff=<file> UFF model --onnx=<file> ONNX model --model=<file> Caffe model (default = no model, random wei
原创
发布博客 2021.09.18 ·
2514 阅读 ·
0 点赞 ·
1 评论

C++ - 判断本机文件是否存在的方式总结

C++ - 判断本机文件是否存在的方式总结由于C++没有像python那样方便的os.path官方库,经常面临着判断一个文件是否在本机上存在都不易用,今天就总结下C++下判断本机文件是否存在的一些方法。1 通用方法1.1 使用std::ifstream判断#include <iostream>#include <fstream>bool Is_File_Exist(const std::string& file_path){ std::ifstream fi
原创
发布博客 2021.09.15 ·
245 阅读 ·
0 点赞 ·
0 评论

C++11 - 委托机制的实现TinyDelegate

1 使用C++11实现委托机制1.1 TinyDelegate类1.1.1 代码TinyDelegate.hpp#ifndef TINY_DELEGATE_H#define TINY_DELEGATE_H#include <functional>#include <chrono>#include <string>#include <list>#include<algorithm>template<typename
原创
发布博客 2021.09.09 ·
77 阅读 ·
0 点赞 ·
0 评论

Github - 使用新的Personal Access Token进行仓库认证

1 Github操作需使用新的Personal Access Token今天早上向Github推送代码的时候突然发现不能推送了,出现了以下错误:remote: Password authentication is temporarily disabled as part of a brownout. Please use a personal access token instead.remote: Please see https://github.blog/2020-07-30-token-au
原创
发布博客 2021.08.14 ·
2176 阅读 ·
4 点赞 ·
2 评论

Mediapipe - 将Mediapipe handtracking封装成动态链接库dll/so,实现在桌面应用中嵌入手势识别功能

1 将Mediapipe handtracking封装成动态链接库dll/so的意义Mediapipe提供了在cpu低延时下的高性能以及丰富功能,比如人脸识别,手部跟踪与识别,全身关节跟踪与识别,如果我们能在我们的应用中加入这些功能岂不是很酷!在python环境下,我们可以通过直接安装Mediapipe包来使用Mediapipe功能,但是我们的桌面应用如果想使用Mediapipe是不是还要集成python环境下的Mediapipe,然后通过本机通讯调用呢?有没有简单的低耦合的方法?如果我们将Media
原创
发布博客 2021.08.13 ·
2039 阅读 ·
8 点赞 ·
38 评论
加载更多