TVM Compiler中文教程:TVM调度原语(Schedule Primitives)

本文是TVM中文教程的一部分,重点介绍TVM调度原语,包括split、tile、fuse、reorder、bind、compute_at、compute_inline和compute_root等,这些原语用于调整计算顺序和局部性,以提高内核代码的性能。通过理解并应用这些调度技术,开发者可以更好地优化其计算任务。
摘要由CSDN通过智能技术生成

TVM调度原语(Schedule Primitives)

TVM是用于高效内核代码构建的版本领域专用语言(Domain-Specialed-Language,DSL) 。

这篇教程,我们将展示通过TVM提供的各种原语怎么去调度计算。

from __future__ import absolute_import, print_function

import tvm
import numpy as np

通常存在几种计算相同结果的方法,但是,不同的方法将导致不同的局部性和性能,所以TVM要求用户提供怎么去调用Schedule描述计算是如何执行的。

Schedule是计算的变换的集合,它通过变换程序中的计算循环Loop,实现不同性能。

#定义一些变量
n = tvm.var('n')
m = tvm.var('m')

调度(Schedule)能通过一系列计算ops来定义,默认情况下,调度计算张量以航为顺序。

#定义矩阵元素element-wise乘法
A = tvm.placeholder((m,n), name='A')
B = tvm.placeholder((m,n), name='B')
C = tvm.compute((m,n),lambda i,j: A[i,j] * B[i,j], name ='C')
#创建调度
s = tvm.create_schedule([C.op])
#lower会将计算从定义转换为真正的可调用函数。 使用参数`simple_mode = True`,它将返回一个可读的C伪代码,我们在这里使用它来打印计划结果。
print(tvm.lower(s, [A, B, C], simple_mode=True))

输出:

produce C {
  for (i, 0, m) {
    for (j, 0, n) {
      C[((i*n) + j)] = (A[((i*n) + j)]*B[((i*n) + j)])
    }
  }
}

一个调度过程由多个阶段组成,一个阶段表示操作的一个调度。我们提供各种方法来调度每个阶段。

分裂split

split通过factor分裂指定轴为两个轴。

A = tvm.placeholder((m,), name='A')
B = tvm.compute((m,), lambda i: A[i]*2, name='B')

s = tvm.create_schedule(B.op)
#分裂0轴为两个轴,先计算内循环再计算外循环,xo为外循环,xi为内循环
xo, xi = s[B].split(B.op.axis[0], factor=32)
print(tvm.lower(s, [A, B], simple_mode=True))

输出:

produce B {
  for (i.outer, 0, ((m + 31)/32)) {
    for (i.inner, 0, 32) {
      if (likely(((i.outer*32) < (m - i.inner)))) {
        B[((i.outer*32) + i.inner)] = (A[((i.outer*32) + i.inner)]*2.000000f)
      }
    }
  }
}

使用npartsfactor作用相反,nparts指定外循环次数,factor指定内循环次数。

A = tvm.placeholder((m,), name='A')
B = tvm.compute((m,), lambda i: A[i], name='B')

s = tvm.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], nparts=32)
print(tvm.lower(s, [A, B], simple_mode=True))

输出:

produce B {
  for (i.outer, 0, 32) {
    for (i.inner, 0, ((m + 31)/32)) {
      if (likely((i.inner < (m - (i.outer*((m + 31)/32)))))) {
        if (likely(((0 - (i.outer*((m + 31)/32))) <= i.inner))) {
          B[(i.inner + (i.outer*((m + 31)/32)))] = A[(i.inner + (i.outer*((m + 31)/32)))]
        }
      }
    }
  }
}

平铺tile

tile通过平铺两个轴执行计算图块

A = tvm.placeholder((m, n), name='A')
B = tvm.compute((m, n), lambda i, j: A[i, j], name='B')

s = tvm.create_schedule(B.op)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x_factor=10, y_factor=5)
print(tvm.lower(s, [A, B], simple_mode=True))

输出:

produce B {
  for (i.outer, 0, ((m + 9)/10)) {
    for (j.outer, 0, ((n + 4)/5)) {
        //先执行10x5的图块,滑动下一个图块
      for (i.inner, 0, 10) {
        for (j.inner, 0, 5) {
          if (likely(((i.outer*10) < (m - i.inner)))) {
            if (likely(((j.outer*5) < (n - j.inner)))) {
              B[(((j.outer*5) + (((i.outer*10) + i.inner)*n)) + j.inner)] = A[(((j.outer*5) + (((i.outer*10) + i.inner)*n)) + j.inner)]
            }
          }
        }
      }
    }
  }
}

融合fuse

fuse能融合一个计算的两个轴

A = tvm.placeholder((m,n),name='A')
B = tvm.compute((m,n), lambda i,j: A[i,j], name='B')

s = tvm.create_schedule(B.op)
#首先平铺成4轴(i.outer,j.outer,i.inner,j.inner)
xo,yo,xi,yi = s[B].tile(B.op.axis[0],B.op.axis[1], x_factor=10, y_factor=5)
#然后融合(i.inner,j.inner)进一个轴:(i.inner.j.inner.fused)
fused = s[B].fuse(xi,yj)
print(tvm.lower(s, [A, B], simple_mode=True))

输出:

produce B {
  for (i.outer, 0, ((m + 9)/10)) {
    for (j.outer, 0, ((n + 4)/5)) {
      for (i.inner.j.inner.fused, 0, 50) {
        if (likely(((i.outer*10) < (m - (i.inner.j.inner.fused/5))))) {
          if (likely(((j.outer*5) < (n - (i.inner.j.inner.fused % 5))))) {
            B[(((j.outer*5) + (i.inner.j.inner.fused % 5)) + (((i.outer*10) + (i.inner.j.inner.fused/5))*n))] = A[(((j.outer*5) + (i.inner.j.inner.fused % 5)) + (((i.outer*10) + (i.inner.j.inner.fused/5))*n))]
          }
        }
      }
    }
  }
}

重排序reorder

reorder能按照指定顺序重新排列轴(类似于permute)。

A = tvm.placeholder((m, n), name='A')
B = tvm.compute((m, n), lambda i, j: A[i, j], name='B')
s = tvm.create_schedule(B.op)
#首先平铺成4轴(i.outer,j.outer,i.inner,j.inner)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x_factor=10, y_factor=5)
s[B].reorder(xi,yo,xo,yi)
print(tvm.lower(s, [A, B], simple_mode=True))

输出:

produce B {
  for (i.inner, 0, 10) {
    for (j.outer, 0, ((n + 4)/5)) {
      for (i.outer, 0, ((m + 9)/10)) {
        for (j.inner, 0, 5) {
          if (likely(((i.outer*10) < (m - i.inner)))) {
            if (likely(((j.outer*5) < (n - j.inner)))) {
              B[(((j.outer*5) + (((i.outer*10) + i.inner)*n)) + j.inner)] = A[(((j.outer*5) + (((i.outer*10) + i.inner)*n)) + j.inner)]
            }
          }
        }
      }
    }
  }
}

绑定bind

bind可以使用线程轴绑定指定的轴,通常在GPU编程中使用。

A = tvm.placeholder((n,), name='A')
B = tvm.compute(A.shape, lambda i: A[i] * 2, name='B')

s = tvm.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], factor=64)
s[B].bind(bx, tvm.thread_axis("blockIdx.x"))
s[B].bind(tx, tvm.thread_axis("threadIdx.x"))
print(tvm.lower(s, [A, B], simple_mode=True))

输出:

produce B {
  // attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = ((n + 63)/64)
  // attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 64
  if (likely(((blockIdx.x*64) < (n - threadIdx.x)))) {
    B[((blockIdx.x*64) + threadIdx.x)] = (A[((blockIdx.x*64) + threadIdx.x)]*2.000000f)
  }
}

从哪里开始计算compute_at

对于包含多个算子的调度,TVM默认从root开始遍历计算张量。

A = tvm.placeholder((m,), name='A')
B = tvm.compute((m,), lambda i: A[i]+1, name='B')
C = tvm.compute((m,), lambda i: B[i]*2, name='C')

s = tvm.create_schedule(C.op)
print(tvm.lower(s, [A, B, C], simple_mode=True))

输出:

produce B {
  for (i, 0, m) {
    B[i] = (A[i] + 1.000000f)
  }
}
produce C {
  for (i, 0, m) {
    C[i] = (B[i]*2.000000f)
  }
}

compute_at可以将B的计算移动到C的第一个计算轴。

A = tvm.placeholder((m,), name='A')
B = tvm.compute((m,), lambda i: A[i]+1, name='B')
C = tvm.compute((m,), lambda i: B[i]*2, name='C')

s = tvm.create_schedule(C.op)
# 移动B循环到C循环的第一个轴
s[B].compute_at(S[C], C.op.axis[0])
print(tvm.lower(s, [A, B, C], simple_mode=True))

输出:

produce C {
  for (i, 0, m) {
    produce B {
      B[i] = (A[i] + 1.000000f)
    }
    C[i] = (B[i]*2.000000f)
  }
}

计算内联compute_inline

compute_inline可以将一个计算阶段标记为内联,然后将计算体扩展并插入需要张量的地址处。(和C中的内联函数一个意思)

A = tvm.placeholder((m,), name='A')
B = tvm.compute((m,), lambda i: A[i]+1, name='B')
C = tvm.compute((m,), lambda i: B[i]*2, name='C')

s = tvm.create_schedule(C.op)
s[B].compute_inline()
print(tvm.lower(s, [A, B, C], simple_mode=True))

输出:

produce C {
  for (i, 0, m) {
    //类似内联函数,直接合成一个循环
    C[i] = ((A[i]*2.000000f) + 2.000000f)
  }
}

compute_root

compute_root可以将一个计算阶段的计算移动到root。(compute_at的逆过程)

A = tvm.placeholder((m,), name='A')
B = tvm.compute((m,), lambda i: A[i]+1, name='B')
C = tvm.compute((m,), lambda i: B[i]*2, name='C')

s = tvm.create_schedule(C.op)
# B移动到C的0轴
s[B].compute_at(s[C], C.op.axis[0])
# B重新移动回root
s[B].compute_root()
print(tvm.lower(s, [A, B, C], simple_mode=True))

输出:

produce B {
  for (i, 0, m) {
    B[i] = (A[i] + 1.000000f)
  }
}
produce C {
  for (i, 0, m) {
    C[i] = (B[i]*2.000000f)
  }
}

总结

本教程介绍了tvm中的调度原语,它允许用户轻松灵活地调度计算。

为了获得良好性能的内核实现,一般工作流程通常是:

  • 通过一系列操作描述您的计算。
  • 尝试使用原语安排计算。
  • 编译并运行以查看性能差异。
  • 根据运行结果调整你的调度。
  • 6
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值