整数转罗马数字
链接:题目链接
题目描述
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个整数,将其转为罗马数字。输入确保在 1 到 3999 的范围内。
示例 1:
输入: 3
输出: “III”
解题思路—贪心思想
这其实和我之前bilibili的笔试最后一题很像,就是用这种贪心的方法,换硬币问题,要求硬币数量最少,这题将所有可能出现的罗马数字组合都枚举出来并且按照数字从大到小来排序,通过python自带divmod函数求得每次要添加几个这种罗马字符,以及余数
代码实现
class Solution:
# 贪心思想
def intToRoman(self, num: int) -> str:
digits = [(1000,"M"),(900,"CM"),(500,"D"),(400,"CD"),(100,"C"),(90,"XC"),(50,"L"),(40,"XL"),
(10,"X"),(9,"IX"),(5,"V"),(4,"IV"),(1,"I")]
roman_digits = []
for value, symbol in digits:
if num == 0:
break
count,num = divmod(num,value)
roman_digits.append(symbol*count)
return "".join(roman_digits)
罗马数字转整数
链接:题目链接
题目描述
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。
解题思路—哈希+找规律
我们可以发现,IV和VI分别表示4和6,并且通过分析可以发现一个规律,就是只要前面的字符表示的数字<后一个字符表示的数字,那就说明需要减去前面的字符表示的数字,否则加上即可,可能有些人会想VIV这种情况怎么办,这种情况是不会出现的,刚好上面有一题整数转罗马字符的题
代码实现
class Solution:
# 哈希和找规律
def romanToInt(self, s: str) -> int:
dic = {'I':1,'V':5,'X':10,'L':50,'C':100,'D':500,'M':1000}
num = 0
n = len(s)
for i in range(n-1):
if dic[s[i]] >= dic[s[i+1]]:
num += dic[s[i]]
elif dic[s[i]] < dic[s[i+1]]:
num -= dic[s[i]]
return num + dic[s[-1]]