贝叶斯新闻分类demo(Python)

本文演示了使用Python进行贝叶斯新闻分类的过程,包括数据来源、结巴分词、TF-IDF关键词提取和LDA主题模型。实验结果显示,关键词能有效概括新闻内容,分类器如MultinomialNB能达到约80%的准确率。
摘要由CSDN通过智能技术生成
#pip install jieba
import pandas as pd
import jieba

数据源:http://www.sogou.com/labs/resource/ca.php

df_news = pd.read_table('./data/val.txt',names=['category','theme','URL','content'],encoding='utf-8')
df_news = df_news.dropna()
df_news.head()

这里写图片描述

df_news.shape

(5000, 4)

分词:使用结吧分词器

content = df_news.content.values.tolist()
print (content[1000])
content_S = []
for line in content:
    current_segment = jieba.lcut(line)
    if len(current_segment) > 1 and current_segment != '\r\n': #换行符
        content_S.append(current_segment)
content_S[1000]

这里写图片描述

df_content=pd.DataFrame({
  'content_S':content_S})
df_content.head()

这里写图片描述

# 停词表
stopwords=pd.read_csv("stopwords.txt",index_col=False,sep="\t",quoting=3,names=['stopword'], encoding='utf-8')
stopwords.head(20)

这里写图片描述

# 去掉停用词
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值