XGBoost调参demo(Python)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hx2017/article/details/78064362

XGBoost

我们用的是保险公司的一份数据

# 各种库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score as AUC
from sklearn.metrics import mean_absolute_error
from sklearn.decompositi on import PCA
from sklearn.preprocessing import LabelEncoder, LabelBinarizer
from sklearn.cross_validation import cross_val_score

from scipy import stats
import seaborn as sns
from copy import deepcopy

%matplotlib inline

# 早期版本的Jupyter可能引发异常
%config InlineBackend.figure_format = 'retina'

数据预处理

我们用的是保险公司的一份数据

train = pd.read_csv('train.csv')

做对数转换

train['log_loss'] = np.log(train['loss'])

数据分成连续和离散特征

features = [x for x in train.columns if x not in ['id','loss', 'log_loss']]

cat_features = [x for x in train.select_dtypes(
        include=['object']).columns if x not in ['id','loss', 'log_loss']]
num_features = [x for x in train.select_dtypes(
        exclude=['object']).columns if x not in ['id','loss', 'log_loss']]

print ("Categorical features:", len(cat_features))
print ("Numerical features:", len(num_features))

Categorical features: 116
Numerical features: 14

ntrain = train.shape[0]

train_x = train[features]
train_y = train['log_loss']

for c in range(len(cat_features)):
    train_x[cat_features[c]] = train_x[cat_features[c]].astype('category').cat.codes

print ("Xtrain:", train_x.shape)
print ("ytrain:", train_y.shape)

Xtrain: (188318, 130)
ytrain: (188318,)

Simple XGBoost Model

首先,我们训练一个基本的xgboost模型,然后进行参数调节通过交叉验证来观察结果的变换,使用平均绝对误差来衡量
mean_absolute_error(np.exp(y), np.exp(yhat))。
xgboost 自定义了一个数据矩阵类 DMatrix,会在训练开始时进行一遍预处理,从而提高之后每次迭代的效率

def xg_eval_mae(yhat, dtrain):
    y = dtrain.get_label()
    return 'mae', mean_absolute_error(np.exp(y), np.exp(yhat))

Model

dtrain = xgb.DMatrix(train_x, train['log_loss'])

Xgboost参数

  • ‘booster’:’gbtree’,
  • ‘objective’: ‘multi:softmax’, 多分类的问题
  • ‘num_class’:10, 类别数,与 multisoftmax 并用
  • ‘gamma’:0.1, 用于控制是否后剪枝的参数,越大越保守,一般0.1、0.2这样子。
  • ‘max_depth’:12, 构建树的深度,越大越容易过拟合
  • ‘lambda’:2, 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
  • ‘subsample’:0.7, 随机采样训练样本
  • ‘colsample_bytree’:0.7, 生成树时进行的列采样
  • ‘min_child_weight’:3, 这个参数默认是 1,是每个叶子里面 h 的和至少是多少,对正负样本不均衡时的 0-1 分类而言,假设 h 在 0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100 个样本。这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。
  • ‘silent’:0 ,设置成1则没有运行信息输出,最好是设置为0.
  • ‘eta’: 0.007, 如同学习率
  • ‘seed’:1000,
  • ‘nthread’:7, cpu 线程数
xgb_params = {
    'seed': 0,
    'eta': 0.1,
    'colsample_bytree': 0.5,
    'silent': 1,
    'subsample': 0.5,
    'objective': 'reg:linear',
    'max_depth': 5,
    'min_child_weight': 3
}

使用交叉验证 xgb.cv

%%time

bst_cv1 = xgb.cv(xgb_params, dtrain, num_boost_round=50, nfold=3, seed=0, 
                feval=xg_eval_mae, maximize=False, early_stopping_rounds=10)

print ('CV score:', bst_cv1.iloc[-1,:]['test-mae-mean'])

CV score: 1218.92834467
Wall time: 1min 6s

我们得到了第一个基准结果:MAE=1218.9

plt.figure()
bst_cv1[['train-mae-mean', 'test-mae-mean']].plot()

这里写图片描述

我们的第一个基础模型:
* 没有发生过拟合
* 只建立了50个树模型

%%time
#建立100个树模型
bst_cv2 = xgb.cv(xgb_params, dtrain, num_boost_round=100, 
                nfold=3, seed=0, feval=xg_eval_mae, maximize=False, 
                early_stopping_rounds=10)

print ('CV score:', bst_cv2.iloc[-1,:]['test-mae-mean'])

CV score: 1171.13663733
Wall time: 1min 57s

现在我们有了第二个基准结果

fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,4)

ax1.set_title('100 rounds of training')
ax1.set_xlabel('Rounds')
ax1.set_ylabel('Loss')
ax1.grid(True)
ax1.plot(bst_cv2[['train-mae-mean', 'test-mae-mean']])
ax1.legend(['Training Loss', 'Test Loss'])

ax2.set_title('60 last rounds of training')
ax2.set_xlabel('Rounds')
ax2.set_ylabel('Loss')
ax2.grid(True)
ax2.plot(bst_cv2.iloc[40:][['train-mae-mean', 'test-mae-mean']])
ax2.legend(['Training Loss', 'Test Loss'])

这里写图片描述
有那么一丁丁过拟合,现在还没多大事
我们得到了新的纪录 MAE = 1171.77 比第一次 (1218.9)的要好. 接下来我们要改变其他参数了。

XGBoost 参数调节

  • Step 1: 选择一组初始参数
  • Step 2: 改变 max_depthmin_child_weight.
  • Step 3: 调节 gamma 降低模型过拟合风险.
  • Step 4: 调节 subsamplecolsample_bytree 改变数据采样策略.
  • Step 5: 调节学习率 eta.
class XGBoostRegressor(object):
    def __init__(self, **kwargs):
        self.params = kwargs
        if 'num_boost_round' in self.params:
            self.num_boost_round = self.params['num_boost_round']
        self.params.update({'silent': 1, 'objective': 'reg:linear', 'seed': 0})

    def fit(self, x_train, y_train):
        dtrain = xgb.DMatrix(x_train, y_train)
        self.bst = xgb.train(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
                             feval=xg_eval_mae, maximize=False)

    def predict(self, x_pred):
        dpred = xgb.DMatrix(x_pred)
        return self.bst.predict(dpred)

    def kfold(self, x_train, y_train, nfold=5):
        dtrain = xgb.DMatrix(x_train, y_train)
        cv_rounds = xgb.cv(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
                           nfold=nfold, feval=xg_eval_mae, maximize=False, early_stopping_rounds=10)
        return cv_rounds.iloc[-1,:]

    def plot_feature_importances(self):
        feat_imp = pd.Series(self.bst.get_fscore()).sort_values(ascending=False)
        feat_imp.plot(title='Feature Importances')
        plt.ylabel('Feature Importance Score')

    def get_params(self, deep=True):
        return self.params

    def set_params(self, **params):
        self.params.update(params)
        return self
def mae_score(y_true, y_pred):
    return mean_absolute_error(np.exp(y_true), np.exp(y_pred))

mae_scorer = make_scorer(mae_score, greater_is_better=False)
bst = XGBoostRegressor(eta=0.1, colsample_bytree=0.5, subsample=0.5, 
                       max_depth=5, min_child_weight=3, num_boost_round=50)
bst.kfold(train_x, train_y, nfold=5)

test-mae-mean  1219.014551
test-mae-std   8.931061
train-mae-mean   1210.682813
train-mae-std   2.798608
Name: 49,  dtype: float64

Step 1: 学习率与树个数

Step 2: 树的深度与节点权重

这些参数对xgboost性能影响最大,因此,他们应该调整第一。我们简要地概述它们:

  • max_depth: 树的最大深度。增加这个值会使模型更加复杂,也容易出现过拟合,深度3-10是合理的。
  • min_child_weight: 正则化参数. 如果树分区中的实例权重小于定义的总和,则停止树构建过程。
xgb_param_grid = {'max_depth': list(range(4,9)), 'min_child_weight': list((1,3,6))}
xgb_param_grid['max_depth']

[4, 5, 6, 7, 8]

%%time
#网格搜索 
grid = GridSearchCV(XGBoostRegressor(eta=0.1, num_boost_round=50, colsample_bytree=0.5, subsample=0.5),
                param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values)

Wall time: 29min 48s

Kgrid.grid_scores_, grid.best_params_, grid.best_score_

这里写图片描述
网格搜索发现的最佳结果:

{'max_depth': 8, 'min_child_weight': 6},
-1187.9597499123447)

设置成负的值是因为要找大的值

def convert_grid_scores(scores):
    _params = []
    _params_mae = []    
    for i in scores:
        _params.append(i[0].values())
        _params_mae.append(i[1])
    params = np.array(_params)
    grid_res = np.column_stack((_params,_params_mae))
    return [grid_res[:,i] for i in range(grid_res.shape[1])]
_,scores =  convert_grid_scores(grid.grid_scores_)
scores = scores.reshape(5,3)
plt.figure(figsize=(10,5))
cp = plt.contourf(xgb_param_grid['min_child_weight'], xgb_param_grid['max_depth'], scores, cmap='BrBG')
plt.colorbar(cp)
plt.title('Depth / min_child_weight optimization')
plt.annotate('We use this', xy=(5.95, 7.95), xytext=(4, 7.5), arrowprops=dict(facecolor='white'), color='white')
plt.annotate('Good for depth=7', xy=(5.98, 7.05), 
             xytext=(4, 6.5), arrowprops=dict(facecolor='white'), color='white')
plt.xlabel('min_child_weight')
plt.ylabel('max_depth')
plt.grid(True)
plt.show()

这里写图片描述
我们看到,从网格搜索的结果,分数的提高主要是基于max_depth增加。min_child_weight稍有影响的成绩,但是,我们看到,min_child_weight = 6会更好一些。

Step 3: 调节 gamma去降低过拟合风险

%%time

xgb_param_grid = {'gamma':[ 0.1 * i for i in range(0,5)]}

grid = GridSearchCV(XGBoostRegressor(eta=0.1, num_boost_round=50, max_depth=8, min_child_weight=6,
                                        colsample_bytree=0.5, subsample=0.5),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values)

Wall time: 13min 45s

grid.grid_scores_, grid.best_params_, grid.best_score_

这里写图片描述
我们选择使用偏小一些的 gamma

Step 4: 调节样本采样方式 subsample 和 colsample_bytree

%%time

xgb_param_grid = {'subsample':[ 0.1 * i for i in range(6,9)],
                      'colsample_bytree':[ 0.1 * i for i in range(6,9)]}


grid = GridSearchCV(XGBoostRegressor(eta=0.1, gamma=0.2, num_boost_round=50, max_depth=8, min_child_weight=6),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)

Wall time: 28min 26s

grid.grid_scores_, grid.best_params_, grid.best_score_

这里写图片描述

_, scores =  convert_grid_scores(grid.grid_scores_)
scores = scores.reshape(3,3)

plt.figure(figsize=(10,5))
cp = plt.contourf(xgb_param_grid['subsample'], xgb_param_grid['colsample_bytree'], scores, cmap='BrBG')
plt.colorbar(cp)
plt.title('Subsampling params tuning')
plt.annotate('Optimum', xy=(0.895, 0.6), xytext=(0.8, 0.695), arrowprops=dict(facecolor='black'))
plt.xlabel('subsample')
plt.ylabel('colsample_bytree')
plt.grid(True)
plt.show()

这里写图片描述

在当前的预训练模式的具体案例,我得到了下面的结果:

`{‘colsample_bytree’: 0.8, ‘subsample’: 0.8},

Step 5: 减小学习率并增大树个数

参数优化的最后一步是降低学习速度,同时增加更多的估计量
绘制不同学习速率的简单模型 (50 trees):

%%time

xgb_param_grid = {'eta':[0.5,0.4,0.3,0.2,0.1,0.075,0.05,0.04,0.03]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=50, gamma=0.2, max_depth=8, min_child_weight=6,colsample_bytree=0.6, subsample=0.9),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values)

CPU times: user 6.69 ms, sys: 0 ns, total: 6.69 ms
Wall time: 6.55 ms

grid.grid_scores_, grid.best_params_, grid.best_score_

这里写图片描述

eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 50 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()

这里写图片描述

{‘eta’: 0.2}, -1160.9736284869114 是目前最好的结果
现在我们把树的个数增加到100

xgb_param_grid = {'eta':[0.5,0.4,0.3,0.2,0.1,0.075,0.05,0.04,0.03]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=100, gamma=0.2, max_depth=8, min_child_weight=6,colsample_bytree=0.6, subsample=0.9),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values)

CPU times: user 11.5 ms, sys: 0 ns, total: 11.5 ms
Wall time: 11.4 ms

grid.grid_scores_, grid.best_params_, grid.best_score_

这里写图片描述

eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 100 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()

这里写图片描述

学习率低一些的效果更好
再增加树的个数呢?

%%time

xgb_param_grid = {'eta':[0.09,0.08,0.07,0.06,0.05,0.04]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=200, gamma=0.2, max_depth=8, min_child_weight=6,colsample_bytree=0.6, subsample=0.9),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values)

CPU times: user 21.9 ms, sys: 34 µs, total: 22 ms
Wall time: 22 ms

grid.grid_scores_, grid.best_params_, grid.best_score_

这里写图片描述

eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 200 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()

这里写图片描述

%%time

# Final XGBoost model

bst = XGBoostRegressor(num_boost_round=200, eta=0.07, gamma=0.2, max_depth=8, min_child_weight=6,colsample_bytree=0.6, subsample=0.9)
cv = bst.kfold(train_x, train_y, nfold=5)

CPU times: user 1.26 ms, sys: 22 µs, total: 1.28 ms
Wall time: 1.07 ms

cv

test-mae-mean   1146.997852
test-mae-std   9.541592
train-mae-mean   1036.557251
train-mae-std   0.974437
Name: 199,  dtype: float64

我们看到200棵树最好的ETA是0.07。正如我们所预料的那样,ETA和num_boost_round依赖关系不是线性的,但是有些关联。

我们花了相当长的一段时间优化xgboost. 从初始值: 1219.57. 经过调参之后达到 MAE=1171.77.

我们还发现参数之间的关系ETAnum_boost_round

  • 100 trees, eta=0.1: MAE=1152.247
  • 200 trees, eta=0.07: MAE=1145.92

`XGBoostRegressor(num_boost_round=200, gamma=0.2, max_depth=8, min_child_weight=6, colsample_bytree=0.6, subsample=0.9, eta=0.07).

展开阅读全文

没有更多推荐了,返回首页