【任务调度系统第一篇】:大数据任务调度框架

本文介绍了大数据任务调度系统的重要性,包括任务编排和运维功能,并列举了主流的调度框架如Azkaban、XXL Job、Elastic Job和Apache Oozie。重点讨论了Azkaban和XXL Job的异同,指出Azkaban在任务编排上的优势,而XXL Job在分布式性能和维护成本上更胜一筹。两者都采用调度中心与执行器分离的设计,底层调度插件依赖于Quartz。
摘要由CSDN通过智能技术生成

1.前言

任务调度系统在大数据平台架构中扮演着比较重要的角色。下图是引自网易的猛犸大数据平台lambda架构图。

在这里插入图片描述
其中的Azkaban就是其任务调度组件。概括来说,任务调度在大数据平台中所扮演的角色主要有:

  1. 任务编排:对任务流按照一定的逻辑串起来。这在大数据开发中,显得比较重要,对于一个工作任务,可能有不同的子任务串起来的,并且有些子任务是并行执行的。举个例子,在做一个机器学习的模型时,可能第一步就是数据清洗,然后是提取特征,接着才是模型预测。然后提取特征的过程中,可能要分为提取属性特征和行为特征。那么这里用拓扑图可以表示为如下图:
    在这里插入图片描述

  2. 任务调度执行:任务调度组件的核心使命肯定是让离线任务按照我们既定的执行计划去周期调度地执行。那么任务调度系统就需要能够按照任务的调度计划去自动执行任务。

  3. 运维功能:作为一个系统肯定要有健全的运维功能,比如说提供任务运行报表功能,调度日志等等。类似于下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值