基于Alexnet的植物病斑识别

a.准备数据
数据使用的是一个植物病害检测比赛中的数据,选择了四类苹果叶片进行识别,真实数据如下所示:
在这里插入图片描述
b.模型结构
本次实验我使用的是Alexnet网络,网络在2012年被提出。网络结构如下:
在这里插入图片描述
根据Alexnet网络结构,我使用Keras打印了模型信息如下:
在这里插入图片描述
c.代码实现
使用keras实现了Alexnet完整代码,数据放在train和test下,每个文件夹下有四个子文件夹,病害类别标签使用0、1、2、3统一标签。

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K


# dimensions of our images.
img_width, img_h
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值