图像分割
文章平均质量分 86
起点站
认真做事,善待他人.
展开
-
特征值特征向量和奇异值分解精彩片段汇总
一、几何角度理解奇异值分解SVDhttps://baijiahao.baidu.com/s?id=1620247228491947246&wfr=spider&for=pchttp://blog.sciencenet.cn/blog-696950-699432.htmlhttps://www.jianshu.com/p/e574e91070adhttps://www...原创 2019-07-06 19:30:01 · 1452 阅读 · 0 评论 -
论文笔记
[1] Hsu C Y, Hsieh Y Y, Lo K H, et al. Incorporating texture information into region-based unsupervised image segmentation using textural superpixels[C]// IEEE International Conference on Image Proces...原创 2018-05-20 15:40:11 · 264 阅读 · 0 评论 -
CVPR 2017 全部及部分论文解读集锦
原文链接:http://mp.weixin.qq.com/sbiz=MzI5MDUyMDIxNA==&mid=2247484464&idx=1&sn=b852980edd194eefb2515a1cc510f016&chksm=ec1fe9c9db6860df1d77704370d63b0a4be65fb9eed1ef6cdf0b569dc606a491c0e8a5...转载 2018-05-19 16:30:12 · 5630 阅读 · 0 评论 -
CVPR 2017论文
转自:https://blog.csdn.net/u010510350/article/details/77218879近期在看CVPR2017的文章,顺便就把CVPR2017整理一下,分享给大家,更多的 Computer Vision的文章可以访问Computer Vision Foundation open access、CVPapers。Machine Learning 1Spotlight...转载 2018-05-19 16:28:43 · 11526 阅读 · 0 评论 -
分水岭超像素
转自:https://blog.csdn.net/guzenyel/article/details/49281167前言:超像素这个概念被提出以来,各种方法层出不穷~在计算机视觉和模式识别中也被广泛的应用。最近几年,CVPR,ICCV,PAMI,TIP,ICIP等各种期刊、会议关于超像素的论文超多。其实,这也说明了一个问题,超像素的实现其实很简单,所以才蹦出那么多算法的文章来....其实早在201...转载 2018-05-19 16:22:22 · 962 阅读 · 0 评论 -
最大流最小割
转自:https://blog.csdn.net/a1781842634/article/details/79453071最近在看maxflow相关的资料,本文主要介绍下自己对最大流和最小割的理解。最大流本来是网络流方面的算法,后来在计算机视觉中也得到广泛的应用,如图割。我觉得要理解一个算法首先要从起源开始,然后再去泛化问题、建立模型,最后才是解决之。本文是以一个新手的角度去理解算法。 首先从最简...转载 2018-05-05 14:29:55 · 552 阅读 · 0 评论 -
显著性轮廓提取、轮廓编组综述要看的内容(一)Berkeley学派
Berkeley 学派Jitendra Malik不用介绍了吧,太大的牛了。如果要介绍起来,可要花不少篇幅了。研究兴趣:分割,知觉组织,纹理,立体视觉,识别等。他带的 26 个学生都在学术和工业领域有重要影响力。" Contour Detection and Hierarchical Image Segmentation "P. Arbelaez, M. Maire, C. Fowlkes, J....转载 2018-04-26 20:50:49 · 797 阅读 · 0 评论 -
OpenCV学习(7) 分水岭算法(1)
转自:http://www.cnblogs.com/mikewolf2002/p/3304118.htmlOpenCV学习(7) 分水岭算法(1) 分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线。 下面左边的灰度图,可以描述为右边的地形图,地形的高度是由灰度图的灰度值决定,灰度为0对应地形...转载 2018-04-21 10:17:32 · 379 阅读 · 0 评论 -
基于形态学分水岭的分割
转自:http://met.fzu.edu.cn/dip/c10_5.htm到现在为止,已经讨论了基于3种主要概念的分割方法:(a)间断的检测;(b)门限处理和(c)区域处理。每种方法各有优点(例如,全局门限处理的速度优势)和缺点(如,以灰度级的间断检测为基础的方法需要诸如边线连接等后处理)。本节中,讨论基于所谓的形态学分水岭概念的方法。接下来将要说明,形态学分水岭分割将其他3种方法中的许多概念进...转载 2018-04-20 16:05:13 · 2870 阅读 · 4 评论 -
图像处理之Matlab特征提取和表达(图像分割)
转自:https://blog.csdn.net/ling_xiobai/article/details/76854220今天,刚学了一些规则图形的特征提取,发现了几个好用的函数。请见下文: 我想对下面的图片进行图像内容提取 一.载入图像,图像分割 因为是一张彩色图像,所以先进行图像分割,最简单的就是阈值化了,可以直接使用im2bw(),图像分割的其他方法先不展开,下回分析,在这...转载 2018-05-22 16:37:54 · 20641 阅读 · 1 评论 -
CVPR 2016-12-07
https://blog.csdn.net/u011171235/article/details/53606988[1] arXiv:1612.01991 [pdf, other] Diverse Sampling for Self-Supervised Learning of Semantic Segmentation 语义分割中自监督学习的多样性抽样 Mohammadreza Mostajab...转载 2018-06-15 08:22:31 · 463 阅读 · 0 评论 -
【转载】计算机视觉、机器学习相关领域论文和源代码大集合
可能用到的代码和数据,记录以备忘。转自:http://blog.csdn.net/zouxy09/article/details/8550952作者:zouxy09出处:http://blog.csdn.net/zouxy09 注:下面有project网站的大部分都有paper和相应的code。Code一般是C/C++或者Matlab代码。最近一次更新:2013-3-17一、特征提取Feature...转载 2018-06-16 16:21:27 · 262 阅读 · 0 评论 -
高斯函数理解随便记录
其实正态分布函数并不是首先来源高斯,只是首先被高斯用于误差分析领域,才慢慢发挥出巨大的作用,e这个东西在数学上很奇妙哈,我想这与三角函数,无穷级数,欧拉等等的研究的很有关系。顺藤摸瓜的看了不少东西,到后来却发现没什么好写的 。顺便再说点,为什么高斯函数的曲线叫钟形曲线,首先有人研究命名了钟形曲面,记得外国的教堂的钟和旅馆里的服务台上的小铃铛吧,后来才有钟形曲线。两个高斯函数的卷积仍然是一个...原创 2019-05-15 11:14:37 · 677 阅读 · 0 评论 -
图像处理中的一些术语(特别是图像分割)
常用词语:1、effectively 、precise、 accurate基本术语:digital image:数字图像digital image processing:数字图像处理image digitalization:图像数字化image representation:图像表达image acquisition:图像的获取pixel:像素image clas...原创 2019-05-05 16:52:14 · 4085 阅读 · 0 评论 -
图像分割之 Geodesic segmentation 和 Graph-Cut
引用:https://blog.csdn.net/jyzhang_cvml/article/details/78359283最近心血来潮了解了一波 Graph-cut 和 geodesic segmentation 分割算法。翻阅了整个中文区域的博客发现鲜有人讲解 geodesic segmentatio 。索性将自己的一些见解写成这篇博客和大家交流。本文把 geodesic segmenta...转载 2019-04-10 11:38:19 · 623 阅读 · 0 评论 -
【数字图像处理】4.1:灰度图像-形态学处理
【数字图像处理】4.1:灰度图像-形态学处理 发表于 2015-01-05 | 分类于 DIP | 评论数: 0 | 阅读次数: 498Abstract: 数字图像处理:第14天Keywords: 形态学,腐蚀,膨胀,开闭操作本文最初发表于csdn,于2018年2月17日迁移至此开篇废话新年第一篇博客,希望大家新年里能都收获更多的知识和技术,今天说的是灰度图像的形态学处理...转载 2018-12-14 09:59:52 · 2691 阅读 · 0 评论 -
level set 模型介绍
转自:https://blog.csdn.net/caoniyadeniniang/article/details/77803913level set 模型介绍 水平集方法与上一章节中的snake模型一样,同样是基于能量的图像分割方法,同样是通过求解最小能量泛函,得到目标轮廓的表达式。不同之处个人认为有两点,首先是能量构造方法的不同,其次是轮廓曲线的表达方式不同,水平集方法的轮廓表示借鉴...转载 2018-11-13 21:05:22 · 4408 阅读 · 1 评论 -
snake 模型
转自:https://blog.csdn.net/caoniyadeniniang/article/details/77803002一、曲线演化理论 假设C=C(p)是一条光滑封闭的曲线,P是任意的参数化变量,设K表示曲 率,T表示切线,N表示法线,则有如下关系存在: ...转载 2018-11-13 20:57:16 · 2244 阅读 · 0 评论 -
图像处理之图像分割(一)之活动轮廓模型:Snake算法简单梳理
转自:https://blog.csdn.net/coming_is_winter/article/details/73139291转载 2018-11-06 13:12:56 · 1993 阅读 · 0 评论 -
SCI论文投稿前要做的准备工作
转:https://blog.csdn.net/dukai392/article/details/72723948今天,我们在学习SCI期刊编辑部教授讲课基础上,也结合我们自己的经验,对SCI投稿前需要做的准备工作进行简单总结:1、段落调整:一定要多看SCI论文,中文文章的introduction与SCI论文实际上有一定的差距,一定不要将中文文章的introduction直接翻译后就投稿。大...转载 2018-11-01 11:32:22 · 835 阅读 · 0 评论 -
OpenCV—图像分割中的分水岭算法原理与应用
OpenCV—图像分割中的分水岭算法原理与应用图像分割是按照一定的原则,将一幅图像分为若干个互不相交的小局域的过程,它是图像处理中最为基础的研究领域之一。目前有很多图像分割方法,其中分水岭算法是一种基于区域的图像分割算法,分水岭算法因实现方便,已经在医疗图像,模式识别等领域得到了广泛的应用。1.传统分水岭算法基本原理分水岭比较经典的计算方法是L.Vincent于1991年在PAMI上提出的[1]。...转载 2018-04-20 15:47:18 · 1406 阅读 · 1 评论 -
分水岭算法的原理及实现
转自:https://blog.csdn.net/u012554092/article/details/77844076算法步骤: 1.构建图像梯度图像。 2.通过一定规则生成n个最初的注水区域(先验知识或局部梯度最小值)。 3.往注水区域内加水,当两注水区域即将合并时,记录下此时的边界。 4.当图像边缘彻底被分割成n个独立区域是算法结束。算法过程示意图:参考博客: OpenCV学习(7) 分水岭...转载 2018-04-20 15:45:23 · 6506 阅读 · 0 评论 -
非极大值抑制(Non-Maximum-Suppression)
转自:https://blog.csdn.net/u014365862/article/details/53376516非极大值抑制(Non-Maximum-Suppression)注意看哦,有两个版本的。理论基础 说实话,讲理论基础实在不是我的强项,但是还是得硬着头皮来讲,希望我的讲解不至于晦涩难懂。 非极大值抑制,简称为NMS算法。是一种获取局部最大值的有效方法...转载 2018-03-25 10:53:11 · 477 阅读 · 0 评论 -
谱聚类(spectral clustering)原理总结
转自:https://www.cnblogs.com/pinard/p/6221564.html谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的算法原理...转载 2018-03-25 09:54:50 · 570 阅读 · 0 评论 -
Contour Detection and Hierarchical Image Segmentation
一 、论文原理分析算法路线:gPb—->OWT—–>UCM每一部分的功能:gPb(Global Pb):计算每一个pixel作为boundary的可能性,即pixel的weight;OWT(Oriented Watershed Transform)将上述gPb的结果转换为多个闭合的regions;UCM(Ultrametric Contour Map)将上述regions集,转换为hi...转载 2018-04-07 15:35:00 · 1223 阅读 · 0 评论 -
图像学习之如何理解方向梯度直方图HOG(Histogram Of Gradient)
本文转自:雷锋网,作者:思颖、连接:https://yq.aliyun.com/articles/176607,https://www.leiphone.com/news/201708/ZKsGd2JRKr766wEd.html?spm=a2c4e.11153959.blogcont176607.4.124ab45bSTodan为什么梯度反方向是函数值局部下降最快的方向? - 忆臻的文章 - 知乎...转载 2018-03-20 22:00:20 · 622 阅读 · 0 评论 -
利用神经网络内部表征可视化class-specific image regions区域
转自:https://blog.csdn.net/m0_37477175/article/details/78625534本篇博客是对MIT周博磊论文《earning Deep Features for Discriminative Localization.》的学习笔记。具体论文《Learning Deep Features for Discriminative Localization...转载 2018-03-24 19:06:44 · 438 阅读 · 0 评论 -
图像分割指标及Matlab代码实现
转自:https://blog.csdn.net/m_buddy/article/details/788074781. 分割指标在完成图像分割任务之后需要对分割结果进行性能评估,一般采用的指标是IOU和假阳性率。例如看下面这幅分割对照图像 上面第三幅图中红色的是分割结果,绿色的是标记图像,黄色的是重叠区域。那么具体的评判是这样的 IOU: 假阳性率: 2. Matlab实现代码% 函数功能:...转载 2018-03-24 15:46:21 · 6636 阅读 · 6 评论 -
基于交互的图像分割算法
转自:https://blog.csdn.net/deepvl/article/details/40582743看论文时,看到了几篇基于交互的图像分割算法,这里罗列一下,后期有时间时再一一拜读,大家有好的论文可以告诉我,我会随时进行补充1: Interactive Image Segmentation Based on Level Sets of Probabilities, TVCG 2012...转载 2018-03-24 11:15:29 · 2070 阅读 · 0 评论 -
机器学习常见评价指标:AUC、Precision、Recall、F-measure、Accuracy
转自:https://blog.csdn.net/zhihua_oba/article/details/78677469机器学习常见评价指标:AUC、Precision、Recall、F-measure、Accuracy主要内容 AUC的计算Precision、Recall、F-measure、Accuracy的计算1、AUC的计算 AUC是一个模型评价指标,用于二分类模型的评价。AUC是“A...转载 2018-03-23 18:00:32 · 736 阅读 · 0 评论 -
从拉普拉斯矩阵说到谱聚类
转自:http://blog.csdn.net/v_july_v/article/details/40738211目录(?)[-] 从拉普拉斯矩阵说到谱聚类引言矩阵基础0 理解矩阵的12点数学笔记1 一堆基础概念拉普拉斯矩阵1 Laplacian matrix的定义2 拉普拉斯矩阵的性质 谱聚类1 相关定义2 目标函数3 最小化RatioCut 与最小化等价4 谱聚类算法过程参考文献与推荐阅...转载 2018-03-21 16:48:29 · 296 阅读 · 0 评论 -
各种对象检测论文总结(Object Detection )
Original url:http://blog.csdn.net/u010167269/article/details/52563573https://handong1587.github.io/deep_learning/2015/10/09/object-detection.htmlhttps://blog.csdn.net/junmuzi/article/details/53418782O...转载 2018-04-14 11:10:09 · 893 阅读 · 0 评论 -
卷积神经网络——输入层、卷积层、激活函数、池化层、全连接层
转自:https://blog.csdn.net/yjl9122/article/details/70198357卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT(输入层)-CONV(卷积层)-RELU(激活函数)-POOL(池化层)-FC(全连接层)卷积层用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3...转载 2018-04-18 21:56:04 · 1089 阅读 · 0 评论 -
积分图像(Integral Image)和积分直方图
积分图像文章推荐:http://blog.sina.com.cn/s/blog_4cb0b54301017wwo.html https://blog.csdn.net/u010807846/article/details/50354000参考文献: [1] Viola P., Jones M. J. Rapid Object Det...原创 2018-04-13 10:34:22 · 3317 阅读 · 0 评论 -
Segmentation obtained by thresholding the UCM at certain level
转自:https://blog.csdn.net/skye1221/article/details/77511797这篇主要讲如何获得最右边的结果,论文可以参考: From Contours to Regions: An Empirical Evaluation Contour Detection and Hierachical Image Segmentation根据上图,我们可以得到一般的思路...转载 2018-04-05 19:47:20 · 244 阅读 · 0 评论 -
图像分割OWT-UCM Hierarchical Segmentation 算法代码应用并提取分层分割结果
转自:https://blog.csdn.net/skye1221/article/details/75125897伯克利的一篇Contour Detection and Hierarchical Image Segmentation论文提出来一个新的图像分割算法,本文将简单介绍该算法对应代码的应用。 这篇博客中对该paper有介绍。 伯克利资源,该网页包括数据库和代码下载链接。 下载源代码,此...转载 2018-04-05 19:38:15 · 1067 阅读 · 1 评论 -
HOG特征(Histogram of Gradient)学习总结
HOG特征(Histogram of Gradient)学习总结转自:https://www.cnblogs.com/wyuzl/p/6792216.html最近在做的项目有用到HOG+SVM这一方面的知识,参考相关论文和网上一些博文在此对HOG特征进行下总结。参考资料: HOG的经典论文:Dalal N, Triggs B. Histograms of oriented gradients fo...转载 2018-03-23 15:39:25 · 409 阅读 · 0 评论