动态规划:转移方程: a[i][j] =a[i-j][j]+a[i-1][j-1]
//大局观:首先,这j个数进行考察,首先,要么全都是大于等于2的,否则就有一个是1;
//假如有一个是1,那么就直接将这个数拿出去,就是a[i-1][j-1];
//假如说全都是大于等于2,那么就将每个都拿掉一层1,很明显,拿掉一层其实不影响数量的
//到这里,我们就证明了,为什么 a[i][j] =a[i-j][j]+a[i-1][j-1];
//因为,这里用了关于每个数一个整体的讨论,从而构建了递推公式
//边界条件:
j= =1||i==j : a[i][j] = 1;
class Solution:
def split(self, n, m):
dp = [[0] * (n + 1) for i in range(n + 1)]
dp[0][0] = 1
for i in range(1, n + 1):
for j in range(0, i + 1):
if j == 1:
dp[i][j] = 1
else:
dp[i][j] += dp[i - 1][j - 1] + dp[i - j][j]
return dp[n][m]