小学生也能一眼看出有长度不同的射(直)线

小学生也能一眼看出有长度不同的射(直)线

黄小宁(通讯:广州市华南师大南区9-303  510631)

                               ————————→x、u=x

设上图表示x轴及u=x轴的局部。R轴即x轴可恒等变换地变为u=x轴。x轴有子部射线S1(1是下标,同样...)⊂x轴:x≥0,S1恒等变换地变为射线S2:u=x≥0,因S2=S1所以S2与S1有一样的长度。S1增元变为包含S1的射线S3⊂x轴:x≥-1。包含S1的S3≠S1说明S3中必有元点在S1外从而使S3比S1长。读者画出射线S3与S1的图像就使小学生也可一眼看出S3比S1长且只长1个长度单位。应有数定量描述图形的大小。应有数与S1的长度相对应,若∞0(0是下标,同样...)表示与S1的长相对应的数,则与S3的长相对应的数是∞1=(∞0)+1>∞0。显然∞0不能是有穷大数。

可见“各射线之间没长度差别”是不堪一击的错误认识。

显然有形状相同但长度不同的射线自然就有形状相同但长度不同的直线。详论见拙文《3000年不识伪≌直线段使中学数学有一系列重大错误——看图识5000年都无人能识的无穷大自然数∈N》http://www.360doc.com/content/20/0729/18/70996036_927464071.shtml。

参考文献

[1]黄小宁。初等数学2300年之重大错误:将无穷多各异点集误为同一集——让中学生也能一下子认识3000年都无人能识的直线段[J],考试周刊,2018(71):58。

电联:13178840497。E-mail:hxn268@126.com。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值