黄小宁
设本文所说集合往往是元不少于两个的集。定义:若数(点)集A可保距变为B则称A≌B。显然A≌A。
h定理1:数(点)集A=B≌B的必要条件是A≌B。
证:⑴任何图≌本身。⑵若A=B则A必可恒等变换地变为B=A≌A,而恒等变换是保距变换。证毕。
R一切非负数x组成R+。初等几何有史2300多年来一直认定:起点和射出的方向都相同的射线必重合;其实这是将无穷多各异射线误为同一线的2300年肉眼直观错觉。伸缩变换是不保距变换。x轴的子部射线x≥0可沿本身伸缩变为新射线y=x^2≥0。初数有几百年函数“常识”:(射线)R+各元x≥0的不保距对应数y=kx≥0(或y=x^k≥0)(k是非1正常数)的全体=R+。据h定理1这是将无穷多各异假R+误为R+⊂R。注:射线绕其起点旋转360度就得一平面,将各异射线误为同一线自然就会将各异平面误为同一面。