小学常识凸显数学对一次方程的认识一直存在重大错误而将无穷多各异方程误为方程y-x=0

小学常识凸显数学对一次方程的认识一直存在重大错误而将无穷多各异方程误为方程y-x=0

黄小宁

二元一次方程y-x=0(x的变域是R)的解集是满足此方程的点(x,y=x)的全体:直线y=x。将无穷多各异直线误为直线y=x自然就会将无穷多各异方程误为方程y-x=0。方程u的图像是A,方程v的图像是B,将两异方程误为同一方程自然就会将两异图误为同一图。

几百年解析几何中的平面直线的方程知识是初等数学中的初等数学。科学“共识”:谁若说“已非常成熟”的初等数学对平面直线的认识一直存在重大错误而将无穷多各异直线误为同一线,那谁就是将几百年来学习与研究过中学解析几何的亿万群众都当成傻子了。

h定理:元不少于两个的点集A=B≌B的必要条件是A≌B。

证1:任何图≌自己是小学数学常识。证2:若A=B则A必可恒等变换地变为B=A≌A,而恒等变换是保距变换。证毕。

如图所示直线 y=x各点(x,y=x)的不保距对应点(2x,2y=2x)的全体是直线2y=2x。如图所示 直线Z:x-y=0(x的变域是x轴)可放大(拉伸)变换为直线L(不≌Z):2x-2y=0(y=x)叠压在原直线Z上,据h定理L不等于Z,两者是伪重合直线。放大前后的直线不全等从而更不相等。

可记X=2x,Y=2y,相应有方程Y-X=0。…。直线Z可沿本身伸缩变为无穷多各异直线:kx-ky=0,伸缩系数k是非1正常数。2300年直线公理使中学几百年解析几何一直将无穷多各异直线误为同一线:直线y=x。

直线L的元点是(2x,2y=2x)。数学家们一直不知满足方程a:x-y=0的点(x,y=x)的全体Z与满足方程b:2x-2y=0的点(2x,2y=2x)的全体L是两根本不同的直线。

方程a:x-y=0(x的变域是R)可变换为方程c;k(x-y)=0(正常数k不等于1)。方程a的解集是直线y=x,方程c的解集是直线ky=kx,解集不同说明这是两个不同的方程。所以“方程a=方程c”这一中学“常识”其实是将无穷多各异方程误为方程y-x=0的重大错误。

直线由直线段组成。将两异直线误为同一线自然就会将两异直线段误为同一线段,从而使康脱推出错上加错的更重大错误:直线段的部分点可与全部点一样多。x轴可沿本身伸缩变换为y=x^3轴不=x轴,直线段A=[0,1] ⊂x轴与直线段B=[0,1] ⊂y轴显然是伪重合、伪全等直线段。人类3000年不知道有伪重合、伪全等直线段。

参考文献

[1]黄小宁。初等数学2300年之重大错误:将无穷多各异点集误为同一集——让中学生也能一下子认识3000年都无人能识的直线段[J],考试周刊,2018(71):58。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值