一句话纠正几千年重大错误:无最小正数
————从西方传进来的数学有违反起码数学常识的定理
黄小宁
通讯:广州市华南师大南区9-303第二信箱 邮编510631
“假传万卷书,真传一句话”:同沿数轴运动的不断靠近的两点间的距离ρ(客观存有由大到小取值且变域为闭区间等的变量)≥0不取完变域U内的一切正数就绝对不能取0,即其必取到无正数可取了,才取0,正如由大到小取值的某x必取0之后才能取负数一样;不纠正几千年重大错误:U内无最小正数,就不能破解2500年芝诺著名运动难题。不能真正用数表达运动的相关学科还处于不知其所以然的唯象论阶段。将科学洞察力远在不少当代人之上的2500年前的芝诺斥之为诡辩家的人才真正是指金为粪的诡辩家啊!
几何常识:沿数轴运动的动点由位置b处运动至a处必遍经两处之间的一切位置之后才能到达a处,虽然2处之间有无穷多个位置。
说由大到小取值的x≥0必能取尽一切正数后取0,同时又说其所取各正数均为x=100(x/100)=100y>99y>98y>97y>…>y>0,即说此x→0总与0至少相隔99个数地“隔数相望”永不重合。这显然前后自相矛盾!所以必有太小正数x小至≠100(x/100),以及必有…。一正数集内各数全都是至少>99个正数的较大正数,能说其包含一切正数?
变量取值必一次次地取,正如吃饭要一口口地吃一样。由小到大取值且变域为(0,1)的变量若没有第一次的取值就绝对不能有以后各次的取值,人类不知其第一次取何数,恰恰表明人对变量变化的规律无力把握。
对人而言无穷集D内数多得取之不尽,人不能遍取D内一切数,但变域为D的变量却能取尽D内数,因为变域是变量所有能取的数组成的集合。变域为无穷集D=[0,1]的x在由大到小取值的过程中必有最后一次的取值:取至0后就无数可取了,虽然最后一次取值的次数n与1相隔无穷多个自然数,即其取数过程是有完有了、有始有终的。这是“无穷无尽”与“有穷有尽”的对立统一性在数学中的生动体现。此一次次取值的x取值的各个次数可排为一无穷数列1,2,3,….,n,…,末尾的n。注!无穷数列1,2,3,…,n,…的各项均是自然数,其中必有与1相隔写不完的那么多(即无穷多)个自然数的无穷大自然数n,正如1与2之间有无穷多个数一样。极限论断定无穷数列{n}中从某项起以后各项n均>“任给定”正数M。
又例如:在“分形几何”中有一“柯赫岛折线”是闭折线,它所围成的图形的面积是常数1,而图形的周长却是>“任给定正数”M的“无穷大数”。将折线剪断拉直,就成为无穷长直线段了。这是长度是无穷大,然而却有两端点的直线段L,否则此L就不能还原为原来的闭折线了。所以书上数轴是可有始点与终点的。对立统一规律是普遍规律。
地球与宇宙相比是极小极小…的无穷小天体,但其与人相比又是有穷大的。这是宇宙中有穷与无穷的对立统一性。对无穷现象的幼稚认识使人们误以为地球人不能做到的事,“宇宙人”也做不到。又例如无限可分的原子就是“小宇宙”。人不可将无穷集内的数全部取出,≠相应变量不能。对人而言B内数多得取之不尽,但人所创立的符合实际的抽象理论中的相应的变量x却可取尽B内数,正如人制造的机器人能干人所不能干的事一样。
无穷数列0.1,0.01,0.001,…的各项均为正数且第n项是n位小数,各项的小数点后面必有且只有一个处于末尾位置的数字1。其中必有无穷多个小数位的无穷小正数0.00…01<“任给定”正数ε。这类正数由无穷多个0和1个1组成,1与小数点相隔写不完的那么多(即无穷多)个0,正如1与2之间有无穷多个数一样,然而这却是有头有尾的一串数字。这是无穷数列与有穷数列的最根本区别。对无穷现象的幼稚认识使人们断定有首项的无穷数列必无末项。
变域为B=[a, b]的x由大到小一次次取值,必能有最后一次的取值:取到a后就无数可取了。此由大到小取值的x必取尽无穷集(a,b)的一切数后才取a,即其必取至再也无除a外的任何数可取了,才取a。数学有定理断定此x在→a的过程中总与a相隔无穷多个属B的数,即说其总远远不能取尽“吃光”a与b之间的数,从而更不能到达a处。这显然是违反起码数学常识的定理。所以如[1]等所述在B中必有紧贴a的数x>a与a之间没有任何可取的数了。同理B各元x必有与之紧贴的数。限于篇幅本文只揭数学内违反常识的错误的冰山一角。
可见形如y≥0及亿亿倍于y的100...0y≥0等距离变量的变域都必有非0最小元素,否则数学中的动点根本不能动!。[1]论证了任何正数集均有最小元素。以下非常形象直观地…。
设空箩筐K装进了D的一切正数,能将D的所有正数全部取出的x必使K内数不断变少,最后变为空无一数。凡违反此最最起码科学常识的理论必是重大错误。“不能将D内数取完”本身就表示取数的变量的变域绝非D。
x > x / n(n =2,3,…)>0每取出K内一数x必使K内至少还剩有无穷多个数x / n,次次如此,即在其取数的整个过程中K内始终都保持有无穷多个数,更谈不上能变空。这充分说明此变量远远不可将K内数全部取出,而只能将K内具性质C的数全部取出。由此可知D内有无穷多正数x均不具有性质C:x > x / n > 0。具性质C的数x都有相比下是天文数字的数量关系。
所以定理C断定变域为D的上述x≥0所取的每一正数x均有性质C,就是断定其永远都远远不能取完K内数,从而更不能取0——几千年数学一直隐含此重大自相矛盾!
同理,断定由大到小取值的x > 0每取出K内一数x都必使K内至少还余下一正数 x′< x,即K永不变空,就是断定此变量不能将K内数全部取出,而只能将属其变域内的一切数取出。由此可见K内必有太小的x小至不能还有比之更小的正数了,所以能将K内数全部取出的x≥0在由大到小取数过程中必能取至一正数x后就无正数可取了——K变得空无一数了。此x即为最小正数0′。否定此太重大革命发现必使数学出现极其尖锐的重大自相矛盾。
“物极必反,量变引起质变。”超过一定限度的太小正数x≠2(x/2)!当x代表太小正数时,其所对应的符号x/2不能代表任何数,正如当 x=0时,c/x 不能代表任何数一样。
从代数角度来说,至少能代表2个数的字母就是变量,只能代表1个数的字母是定量。代数式y<x中的x每取一数x,y都能与之相比,每次相比的结果总是y<x,说x可一个不漏地遍取所有正数,就是说y可一个不漏地遍比所有正数都小而取非正数,即在y所有能代表(取)的数中必有数y<一切正数,这正如说一个人罪大恶极就是说要将其枪毙一样。这是一字那么浅的道理啊!!!所以,说0 < y = x/2 < x (变域为V,V各元x>0均有对应数x/2 = y)中的x可取任何正数,V含所有正数,就是断定式中y 必可变至<任何(一切)正数而取非正数——重大错误!
说由大到小取值的x≥0从1→0的过程中总与0至少相隔一个正数x′∈其变域Q,显然就是说此变量总与0“隔数相望”永不重合。所以在Q中必有最小正数x使x/k (k>1)不属Q。同理,书上x数轴上必有最小正数点x= t ,x轴上除个别点外的各正数点x均必有与之最近的同属x轴的正数点x+t。故x轴是由长度为 t 的点组成的点集。小学生也一眼看出“长度为0的点能组成有长度的线段(点集)”是典型的无中生有论啊!若t有无穷多对应正数t/k(k>1),则t及>t的正数相比下全都是极大极大…(无穷多个极大)的无穷大正数,x轴的各点远不可与各实数一一对应。数轴是连续的,沿数轴运动的动点从原点出发离开原点,必首先与其相隔有穷多个点,然后才能与其相隔无穷多个点,有数学定理断定任何正数点位置都与原点相隔无穷多个点,这显然是自相矛盾的。而且自然界中既有飞跃性的突变,更有“冰冻三尺非一日之寒”的渐变。
不明此重大真相使康脱推出脱离健康的极荒唐病态理论:x轴上的线段[0,2]的各点能与其子部[0,1]的各点一一对应。推出“数学可不受最起码语文、科学常识:部分<全体的束缚”的“革命发现”。这使数学有方向、路线错误!
[2]提出了y=f(x)数轴概念。x轴上的各个点x均由x变换为点y=2x,x轴就变换为以点y(x)为元素的y(x)轴,原点是y(x)=x=0 。其是长度为2t 的点的点集。如[1][2][3]等所述“点(位置)”有大小且有大点与小点之分。将y=x数轴与人们未知的y=2x等数轴混为一谈就搞错了变量的变域,从而不知有同样长的两线段e与r,r所包含的点却远远多于e所包含的点。
变域是变量所有能取的数组成的集合。搞错变量的变域是导致全盘皆错的最重大根本错误。
若0 ≤ x ≤1表示x的变域是[0,1] = D,那么相应的0 ≤ 2x ≤2也表示2x=y的变域Z是[0,2](记为2D)吗?即定义域为D的y =2x的值域Z=2D吗?这完全是中学数学问题。
y= f(x)=2x 是说x的变域D的各元x均有对应数y=2x。这所有的y组成的集合Z就是 f(x) 的值域。
最关键的是若Z与2D是同一数集,则两者必对等即Z的各元必与2D的各元一一对应,这是Z=2D的必要条件。两变量x与增函数y(x)若(在整个变化过程中)总近似相等(例如x与1.0001x),则其变域必近似相等,若总相等,才能有其变域相等。
Z的各元y=2x是由 [0,2]=2D的子集D 的各元x均由x变换为2x=y而来的。Z的生成过程表明其各元不可与2D的各元一一对应而只是与2D的一半元素组成的D的各元一一对应。这说明连Z=2D的必要条件也不具备,故Z ≠ 2D。
Z的各元2x全都有“对象”x ∈D了,从而全都不能与(1,2] 的各元x“搞对象”。否定此理者暴露其根本不懂“一一对应”概念。
形成鲜明对比的是由 2D的各元x均由x变换为2x后所形成的新的数集就与2D对等。
所以Z各元与D各元一一对应≠2D各元与D各元一一对应,数学引以为豪的被“最伟大数学家”希尔伯特断定任何人都不能推翻的百年无穷集论,是重大的百年之误!建立在此重大错误之上的理论必是错上加错的更重大错误。不及时纠正会使人在错误的泥坑里越陷越深以致无力自拔。
“尽信书,不如无书。”说的是尽信书的学习方法会使读书人的科学洞察力远不如没读过书的文盲。连文盲都不如的人会无知地将造福全人类的千载难逢的极重大发现当成危害极大的毒草。数学否定客观存在的“特异”数犹如医学否认客观存在的非典病毒——是致命错误。
参考文献
[1]黄小宁 再论任何正数集V+均有最小、大正数——推翻百年康脱无穷集论破解2500年芝诺世界难题,见:中国精典文库[C],北京:中国大地出版社:2004.10:814。
[2]黄小宁 极浅显常识揭示数学有极重大根本错误——非创立全新数学不可的原因,见:中国学校教育与科研·数学·计算机卷[C],北京:中国农业科技出版社,2003.5:7。
[3]黄小宁 发现最小正数破解2500年芝诺疑难,见:中国高等教育研究·数学卷,北京:中国大地出版社,2000.12:17。
[4]黄小宁 再论发现最小、大正数彻底推翻康托无穷集论破解2500年芝诺世界难题(上),见:中国学校教育与科研·数学·计算机卷,北京:中国农业科技出版社:2002.6:21。
[5]黄小宁 极浅显常识暴露极重大根本错误:无最小正数,见:中华教师文存[C],北京:当代中国出版社,2003.3:93。
[6]黄小宁 一眼看出有最小、大正数一下子推翻百年集合论、破解2500年芝诺著名世界难题,发明与创新增刊[C],2006:125。
[7]黄小宁 “最伟大创造之一”的康脱集论最让数学脱离健康——再三论证“无最小正数”是几千年重大错误,见:中华素质教育理论与实践新探(4)[C],北京:中国戏剧出版社,2006.2:423.
[ 8]黄小宁 极浅显常识揭示数轴上的点远远不能与各实数一一对应,学习方法报·教研版(N)2002.11.22,4版。
电子信箱:hxl268@163.com(hxl中的l是英文字母) 电联:020-88506843(下午)初稿完成于 2007-5-31 .