题目大意:
题意:n*m的格子里放棋子,一次只能放一个,问当棋盘的所有列和所有行中都至少有一个棋子时的期望次数。
题解:
看到这个题的时候,感觉和做期望专题做过的CodeForces - 398B 和 poj2096 很类似,于是就按照印象中这两道题的做法去写了,但是写完之后却总是得不到正确的结构,后来分析之下才发现原来他们是有区别的!
codeforces398B是染色,每次在格子里任选一个去染,所以每次的选择范围都是整个棋盘,也就是说染过的格子还可能再染,而本题,放棋子,那就肯定是放了棋子就自动被占了,所以每次放的范围都是在缩小的。所以dp需要新开一维存放目前已经走了几步了,就是放了几颗棋子了。
dp[i][j][k]表示我当前已经走了k步,已经有i行j列被占了的概率
最后期望步数=
期望=概率*数目
注意dp第三维是要开到m*n的数据范围
一定要注意dp[i][j][k]由dp[i][j][k-1]转移过来的时候,i=n&&j=m这种情况是不行的!!!WA哭了。。。。。。。
#include<bits/stdc++.h>
#include<cstring>
using namespace std;
double dp[60][60][60*60];
int main()
{
int T;
cin>>T;
int n,m;
while(T--)
{
cin>>n>>m;
memset(dp,0,sizeof(dp));
dp[0][0][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
for(int k=1;k<=i*j;++k)
{
dp[i][j][k]+=dp[i-1][j][k-1]*(((double)n-i+1)*j)/((double)n*m-k+1);
dp[i][j][k]+=dp[i][j-1][k-1]*(i*((double)m-j+1))/((double)n*m-k+1);
dp[i][j][k]+=dp[i-1][j-1][k-1]*(((double)n-i+1)*((double)m-j+1))/((double)n*m-k+1);
if(i!=n || j!=m)
dp[i][j][k]+=dp[i][j][k-1]*((double)i*j-k+1)/((double)n*m-k+1);
}
double ans=0;
for(int i=1;i<=n*m;++i)
ans+=dp[n][m][i]*i;
cout<<fixed<<setprecision(12)<<ans<<endl;
}
return 0;
}