torch.cuda.empty_cache()
因为PyTorch是有缓存区的设置的,意思就是一个Tensor就算被释放了,进程也不会把空闲出来的显存还给GPU,而是等待下一个Tensor来填入这一片被释放的空间。所以我们用nvidia-smi/gpustat看到的显存占用不会减少
用torch.cuda.empty_cache可以清空缓冲区
在程序中加上这句会使速度变慢一些,但是有些情况下会有用,例如程序之前test的时候总是爆显存,然后在循环中加上了这句就不爆了
for i, data in enumerate(data_loader): torch.cuda.empty_cache() img_meta = data['img_meta'][0].data[0] img_name = img_meta[0]['filename'].split('/')[-1] with torch.no_grad(): result = model(return_loss=False, rescale=not show, **data)
如果显存资源比较紧缺,可以在每个epoch开始时释放下不用的显存资源。
torch.cuda.empty_cache() # 释放显存
Pytorch清空显存缓冲区(torch.cuda.empty_cache)
于 2021-08-18 12:09:47 首次发布
本文探讨了PyTorch中GPU显存的管理,特别是`torch.cuda.empty_cache()`函数的作用。该函数用于清空CUDA缓存,防止已释放的显存被旧数据占用。当程序运行过程中遇到显存不足问题时,适时调用此函数可以避免显存爆满。虽然这可能导致短暂的性能下降,但在某些情况下(如循环中)能有效防止显存溢出。建议在每个epoch开始时使用,以释放不必要的显存资源。
摘要由CSDN通过智能技术生成