题目描述
你来到一个迷宫前。该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分数。还有若干双向道路连结这些房间,你沿着这些道路从一个房间走到另外一个房间需要一些时间。游戏规定了你的起点和终点房间,你首要目标是从起点尽快到达终点,在满足首要目标的前提下,使得你的得分总和尽可能大。现在问题来了,给定房间、道路、分数、起点和终点等全部信息,你能计算在尽快离开迷宫的前提下,你的最大得分是多少么?
输入
第一行4个整数n (<=500), m, start, end。n表示房间的个数,房间编号从0到(n - 1),m表示道路数,任意两个房间之间最多只有一条道路,start和end表示起点和终点房间的编号。 第二行包含n个空格分隔的正整数(不超过600),表示进入每个房间你的得分。 再接下来m行,每行3个空格分隔的整数x, y, z (0<z<=200)表示道路,表示从房间x到房间y(双向)的道路,注意,最多只有一条道路连结两个房间,你需要的时间为z。
输入保证从start到end至少有一条路径。
输出
占一行,分别最短时间和相应的最大得分,中间用空格隔开。
样例输入
3 2 0 2 1 2 3 0 1 10 1 2 11
样例输出
21 6
算法描述
本题采用Dijkstra算法找到最短通关时间,在遇到通关时间相同的情况下,使用回溯法找到得分较大的路径,每次回溯保留得分较大的路径,最后得到的从起点到终点使用时间最短的路径即为所求。
代码如下
#include<iostream>
using namespace std;
#define maxtime 10000
int main() {
int n, m, start, end;
cin >> n >> m >> start >> end;
int* w = new int[n];//存放得分
for (int i = 0; i < n; i++)
{
int value;
cin >> value;
w[i] = value;
}
int* q = new int[n];
for (int i = 0; i < n; i++)
q[i] = 0;
int** p = new int*[n];//存放i,j两个房间之间的距离
for (int i = 0; i < n; i++)
{
p[i] = new int[n];
for (int j = 0; j < n; j++)
{
if (i == j)p[i][j] = 0;
else p[i][j] = maxtime;
}
}
for (int i = 0; i < m; i++)
{
int x, y, z;
cin >> x >> y >> z;
p[x][y] = z;
p[y][x] = z;//双向
}
int** t = new int* [n];
bool* judge = new bool[n];
for (int i = 0; i < n; i++)
judge[i] = false;
for (int i = 0; i < n; i++)
{
t[i] = new int[2];
int j;
t[i][0] = -1;//存放上一个房间编号
t[i][1] = maxtime;//存放到起点的距离
if (p[start][i]!=maxtime)
{
t[i][0] = start;
t[i][1] = p[start][i];
}
}
for (int i = 0; i < n - 1; i++)
{
int temp = maxtime;
int u = start;
for (int j = 0; j < n; j++)
{
if (j == start)continue;
if ((!judge[j]) && t[j][1] < temp)
{
u = j;
temp = t[j][1];
}
}
judge[u] = true;
for (int j = 0; j < n; j++)
{
if (u == j)continue;
int newtime = t[u][1] + p[u][j];
if (newtime < t[j][1])
{
t[j][1] = newtime;
t[j][0] = u;
int max = w[j]+w[u];
int x = u;
while (t[x][0] != start)//迭代查找,回溯到起点
{
max += w[t[x][0]];
x = t[x][0];
}
max += w[start];
q[j] = max;
}
else if (newtime == t[j][1]&&newtime!=maxtime)
{
int max1 = w[j];
int x = j;
while (t[x][0] != start)//迭代查找
{
max1 += w[t[x][0]];
x = t[x][0];
}
max1 += w[start];
int max2 = w[j] + w[u];
int y = u;
while (t[y][0] != start)
{
max2 += w[t[y][0]];
y = t[y][0];
}
max2 += w[start];
if (max2 > max1)
{
t[j][0] = u;
q[j] = max2;
}
}
}
}
cout << t[end][1]<<' '<<q[end];
return 0;
}