给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组。如果不存在符合条件的连续子数组,返回 0。
示例:
输入: s = 7, nums = [2,3,1,2,4,3]
输出: 2
解释: 子数组 [4,3] 是该条件下的长度最小的连续子数组。
进阶:
如果你已经完成了O(n) 时间复杂度的解法, 请尝试 O(n log n) 时间复杂度的解法。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-size-subarray-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法一:双指针+滑动窗口
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int left = 0, sum = 0, len = nums.size();
int res = INT_MAX;
if(len == 0) {
return 0;
}
for(int i = 0; i < len; i++) {
sum += nums[i];
while(sum >= s) {
res = min(res, i - left + 1);
sum -= nums[left++];
}
}
return res == INT_MAX ? 0 : res;
}
};
时间复杂度 O(n)
解法二:二分查找
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int len = nums.size(), sums[len + 1] = {0}, res = len + 1;
for(int i = 1; i < len + 1; i++) {
sums[i] = sums[i - 1] + nums[i - 1];
}
for(int i = 0; i < len + 1; i++) {
int right = searchRight(i + 1, len, sums[i] + s, sums);
if(right == len + 1) {
break;
}
if(res > right - i) {
res = right - i;
}
}
return res == len + 1 ? 0 : res;
}
int searchRight(int left, int right, int key, int sums[]) {
while(left <= right) {
int mid = (left + right) / 2;
if(sums[mid] >= key) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return left;
}
};
时间复杂度O(nlogn)