颠倒给定的 32 位无符号整数的二进制位。
示例:
输入: 43261596
输出: 964176192
解释: 43261596 的二进制表示形式为 00000010100101000001111010011100 ,
返回 964176192,其二进制表示形式为 00111001011110000010100101000000 。
进阶:
如果多次调用这个函数,你将如何优化你的算法?
方法一:
来看看大师写的代码,大家可以看下Java里面Integer包装类里面的reverse方法源码,我是有点看不懂…大家可以研究下
注意下:
>>> 和 <<< 在Java里面为无符号移位,c++的话需要转为无符号整数在运算
另外0x5555这种属于某些特定整数的16进制表示,这些整数的二进制形式很特殊,用16进制表示可以借助系统的计算器快速计算相应的二进制形式
public static int reverse(int i) {
// HD, Figure 7-1
i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
i = (i << 24) | ((i & 0xff00) << 8) |
((i >>> 8) & 0xff00) | (i >>> 24);
return i;
}
class Solution {
public:
uint32_t reverseBits(uint32_t n) {
n = (n & 0x55555555) << 1 | (n >> 1) & 0x55555555;
n = (n & 0x33333333) << 2 | (n >> 2) & 0x33333333;
n = (n & 0x0f0f0f0f) << 4 | (n >> 4) & 0x0f0f0f0f;
n = (n << 24) | ((n & 0xff00) << 8) |
((n >> 8) & 0xff00) | (n >> 24);
return n;
}
};
class Solution {
public:
uint32_t reverseBits(uint32_t n) {
unsigned int NO_OF_BITS = sizeof(n) * 8;
unsigned int reverse_num = 0, i, temp;
for (i = 0; i < NO_OF_BITS; i++)
{
temp = (n & (1 << i));
if(temp)
reverse_num |= (1 << ((NO_OF_BITS - 1) - i));
}
return reverse_num;
}
};
时间复杂度:O(logn)
空间复杂度:O(1)
方法二:
保持reversenum每一位与给定num相等直到num变成0,之后反向移动剩余的位
class Solution {
public:
uint32_t reverseBits(uint32_t n) {
unsigned int count = sizeof(n) * 8 - 1;
unsigned int reverse_num = n;
n >>= 1;
while(n)
{
reverse_num <<= 1;
reverse_num |= n & 1;
n >>= 1;
count--;
}
reverse_num <<= count;
return reverse_num;
}
};
时间复杂度:O(logn)
空间复杂度:O(1)