给定一个非负整数 num。 对于范围 0 ≤ i ≤ num 中的每个数字 i ,计算其二进制数中的1的数目并将它们作为数组返回。
示例:
比如给定 num = 5 ,应该返回 [0,1,1,2,1,2].
进阶:
- 给出时间复杂度为O(n * sizeof(integer)) 的解答非常容易。 但是你可以在线性时间O(n)内用一次遍历做到吗?
- 要求算法的空间复杂度为O(n)。
- 你能进一步完善解法吗? 在c ++或任何其他语言中不使用任何内置函数(如c++里的 __builtin_popcount)来执行此操作。
方法一:一位一位计算,但是这是完全不符合题目要求的,题目中希望你给出更优化的算法
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res;
for(int i=0;i<=num;i++){
int x = count(i);
res.push_back(x);
}
return res;
}
int count(int n){
int cnt = 0;
while( n ){
if( n%2 == 1 ){
cnt++;
}
n /= 2;
}
return cnt;
}
};
法二:找规律,规律是,从1开始,遇到偶数时,其1的个数和该偶数除以2得到的数字的1的个数相同,遇到奇数时,其1的个数等于该奇数除以2得到的数字的1的个数再加1
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res{0};
for(int i=1; i <= num; i++){
if( i%2 == 0 ){
res.push_back(res[i/2]);
}else{
res.push_back( res[i/2] + 1 );
}
}
return res;
}
};
方法三:利用i&(i-1),i&(i-1)一方面可以用来判断一个数是否为2的指数,放在这里的规律是,针对结果数组,每个下标i = i&(i-1)+1.
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res(num+1,0);
for(int i=1; i <= num; i++){
res[i] = res[i&(i-1)]+1;
}
return res;
}
};
也可以换一种写法,意思差不多
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res(num+1,0);
for(int i=1; i <= num; i++){
res[i] = res[i/2] + (i % 2);
}
return res;
}
};
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res(num+1,0);
for(int i=1; i <= num; i++){
res[i] = res[i>>1] + (i & 1);
}
return res;
}
};