L2-023 图着色问题(25 分)
图着色问题是一个著名的NP完全问题。给定无向图 G = (V, E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0 < V <= 500)、E(>= 0)和K(0 < K <= V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(<= 20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出“Yes”,否则输出“No”,每句占一行。
输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
分析:这题主要考察对图的遍历,题目要求你判断給定的颜色分配是不是图着色问题的一个解,而图着色问题的要求是用k种颜色为图G中的每个顶点分配一种颜色,并且不会有相邻两个顶点具有同一种颜色。可以枚举所有相连的点,看颜色是否相同。
#include<cstdio>
#include<iostream>
#include<vector>
#include<map>
using namespace std;
const int N = 1e5+11;
const int M = 1e6+11;
vector<int> vet[N];
int n;
int color[N];
int flag;
void solve(){
for(int i = 1; i <= n; i++) {
for(int j = 0; j < vet[i].size(); j++){
int v = vet[i][j];
if(color[i] == color[v]) {
flag = 0;
}
}
}
}
int main()
{
int m,k;
scanf("%d %d %d",&n,&m,&k);
while(m--) {
int a,b;
scanf("%d %d",&a,&b);
vet[a].push_back(b);
vet[b].push_back(a);
}
int t;
scanf("%d",&t);
while(t--) {
map<int,int> mp;
int f = 1;
for(int i = 1; i <= n; i++) {
scanf("%d", &color[i]);
mp[color[i]] = 1;
}
if(mp.size() != k){
printf("No\n");
} else {
flag = 1;
solve();
if(flag) {
printf("Yes\n");
} else {
printf("No\n");
}
}
}
return 0;
}