【20230316】【每日一题】买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。


动规:

  1. 确定dp数组及其下标含义 :一天一共有五个状态

  1. 没有操作

  1. 第一次持有股票

  1. 第一次未持有股票

  1. 第二次持有股票

  1. 第二次未持有股票

  1. 确定递推关系式:

dp[i][1]有两种来源:第i天买入了 ;第i天没买,i-1天时就持有了

依次类推。

  1. dp数组的初始化:

dp[0][0]=0;

dp[0][1]=-prices[0];

dp[0][2]=0;

dp[0][3]=-prices[0]; //第二次持有依赖于前一天的第一次未持有的状态

dp[0][4]=0;

  1. 确定遍历顺序 从前往后

  1. 举例验证dp数组

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int length=prices.size();
        if(length==1)   return 0;
        vector<vector<int>> dp(length,vector<int>(5,0));
        //初始化
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        dp[0][2]=0;
        dp[0][3]=-prices[0];
        dp[0][4]=0;
        for(int i=1;i<length;i++){
            //0.没有操作
            dp[i][0]=dp[i-1][0];
            //1.第一次持有股票:第i天买入;第i-1天就买入了,继续沿用i-1天的状态
            dp[i][1]=max(dp[i-1][0]-prices[i],dp[i-1][1]);
            //2.第一次不持有股票:第i天卖了;第i-1天就第一次未持有了
            dp[i][2]=max(dp[i-1][1]+prices[i],dp[i-1][2]);
            //3.第二次持有股票:第i天买入;第i-i天就第二次持有了
            dp[i][3]=max(dp[i-1][2]-prices[i],dp[i-1][3]);
            //4.第二次未持有股票:第i天卖了;第i-1天就第二次未持有了
            dp[i][4]=max(dp[i-1][3]+prices[i],dp[i-1][4]);
        }
        int result=dp[length-1][0];
        for(int i=1;i<=4;i++){
            result=max(result,dp[length-1][i]);
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值