【HNOI2015】开店

##题目描述
题目大意:给定一颗 n ( n ≤ 150000 ) n(n\leq150000) n(n150000)个点的树,每个点有点权,边有边权(表示两个点之间的距离)。 q ( q ≤ 200000 ) q(q\leq200000) q(q200000)次询问,每次询问点权在 [ L , R ] [L, R] [L,R]之间的所有点到某个点的距离之和。强制在线。
题目链接

##分析
首先考虑一个简化的版本,询问所有点到点 u u u的距离和。尝试进行公式推导。
d e p [ i ] , s i z e [ i ] dep[i], size[i] dep[i],size[i]分别表示以 1 1 1为根时第 i i i个点的深度和子树大小。观察 1 1 1为根和 u u u为根会发生哪些变化。
u u u的子树中某节点 v v v的深度会从 d e p [ v ] dep[v] dep[v]变成 d e p [ v ] − d e p [ u ] dep[v]-dep[u] dep[v]dep[u],相当于都减少了 d e p [ u ] dep[u] dep[u],且有 s i z e [ u ] 个 点 发 生 了 此 变 化 size[u]个点发生了此变化 size[u] f a [ u ] fa[u] fa[u]的子树,且不是 u u u的子树中的某节点 v v v,深度会从 d e p [ v ] dep[v] dep[v]变成 d e p [ v ] − d e p [ f a [ u ] ] + d e p [ u ] − d e p [ f a [ u ] ] dep[v]-dep[fa[u]]+dep[u]-dep[fa[u]] dep[v]dep[fa[u]]+dep[u]dep[fa[u]],相当于减少了 2 d e p [ f a [ u ] ] − d e p [ u ] 2dep[fa[u]]-dep[u] 2dep[fa[u]]dep[u],且有 s i z e [ f a [ u ] ] − s i z e [ u ] size[fa[u]]-size[u] size[fa[u]]size[u]个点发生了此变化,以此类推。
更具体的描述,定义 a i a_{i} ai 1 1 1 u u u的链上的第 i i i个点, 1 1 1 u u u的链上共有 k k k个点,那么所有点到 u u u的距离之和可以用如下式子表示:
∑ i = 1 n d e p [ i ] − ∑ i = 1 k − 1 ( s i z e [ a i ] − s i z e [ a i + 1 ] ) ∗ ( 2 ∗ d e p [ a i ] − d e p [ u ] ) − s i z e [ u ] ∗ d e p [ u ] \sum_{i=1}^{n}dep[i] - \sum_{i=1}^{k-1}(size[a_{i}]-size[a_{i+1}])*(2*dep[a_{i}]-dep[u])-size[u]*dep[u] i=1ndep[i]i=1k1(size[ai]size[ai+1])(2dep[ai]dep[u])size[u]dep[u]

展开可得:
∑ i = 1 n d e p [ i ] − s i z e [ u ] ∗ d e p [ u ] − \sum_{i=1}^{n}dep[i]- size[u]*dep[u]- i=1ndep[i]size[u]dep[u]
( 2 ∗ ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ a i ] − (2*\sum_{i=1}^{k-1}size[a_{i}]*dep[a_{i}]- (2i=1k1size[ai]dep[ai] 2 ∗ ∑ i = 1 k − 1 s i z e [ a i + 1 ] ∗ d e p [ a i ] − 2*\sum_{i=1}^{k-1}size[a_{i+1}]*dep[a_{i}]- 2i=1k1size[ai+1]dep[ai] ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ u ] + \sum_{i=1}^{k-1}size[a_{i}]*dep[u]+ i=1k1size[ai]dep[u]+ ∑ i = 1 k − 1 s i z e [ a i + 1 ] ∗ d e p [ u ] ) \sum_{i=1}^{k-1}size[a_{i+1}]*dep[u]) i=1k1size[ai+1]dep[u])
= ∑ i = 1 n d e p [ i ] − s i z e [ u ] ∗ d e p [ u ] − =\sum_{i=1}^{n}dep[i]- size[u]*dep[u]- =i=1ndep[i]size[u]dep[u]
2 ∗ ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ a i ] + 2*\sum_{i=1}^{k-1}size[a_{i}]*dep[a_{i}]+ 2i=1k1size[ai]dep[ai]+ 2 ∗ ∑ i = 1 k − 1 s i z e [ a i + 1 ] ∗ d e p [ a i ] + 2*\sum_{i=1}^{k-1}size[a_{i+1}]*dep[a_{i}]+ 2i=1k1size[ai+1]dep[ai]+ ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ u ] − \sum_{i=1}^{k-1}size[a_{i}]*dep[u]- i=1k1size[ai]dep[u] ∑ i = 1 k − 1 s i z e [ a i + 1 ] ∗ d e p [ u ] \sum_{i=1}^{k-1}size[a_{i+1}]*dep[u] i=1k1size[ai+1]dep[u]

其中
∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ u ] − ∑ i = 1 k − 1 s i z e [ a i + 1 ] ∗ d e p [ u ] \sum_{i=1}^{k-1} size[a_{i}]*dep[u]-\sum_{i=1}^{k-1}size[a_{i+1}]*dep[u] i=1k1size[ai]dep[u]i=1k1size[ai+1]dep[u]
= ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ u ] − ∑ i = 2 k s i z e [ a i ] ∗ d e p [ u ] = \sum_{i=1}^{k-1}size[a_{i}]*dep[u]-\sum_{i=2}^{k}size[a_{i}]*dep[u] =i=1k1size[ai]dep[u]i=2ksize[ai]dep[u]
= s i z e [ a 1 ] ∗ d e p [ u ] − s i z e [ a k ] ∗ d e p [ u ] = n ∗ d e p [ u ] − s i z e [ u ] ∗ d e p [ u ] = size[a_{1}]*dep[u] -size[a_{k}]*dep[u]= n*dep[u]-size[u]*dep[u] =size[a1]dep[u]size[ak]dep[u]=ndep[u]size[u]dep[u]

于是原式变为
∑ i = 1 n d e p [ i ] + n ∗ d e p [ u ] − 2 ∗ s i z e [ u ] ∗ d e p [ u ] \sum_{i=1}^{n}dep[i] +n*dep[u]-2*size[u]*dep[u] i=1ndep[i]+ndep[u]2size[u]dep[u]
− 2 ∗ ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ a i ] + 2 ∗ ∑ i = 1 k − 1 s i z e [ a i + 1 ] ∗ d e p [ a i ] - 2*\sum_{i=1}^{k-1}size[a_{i}]*dep[a_{i}]+2*\sum_{i=1}^{k-1}size[a_{i+1}]*dep[a_{i}] 2i=1k1size[ai]dep[ai]+2i=1k1size[ai+1]dep[ai]

现在观察
− 2 ∗ ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ a i ] + 2 ∗ ∑ i = 1 k − 1 s i z e [ a i + 1 ] ∗ d e p [ a i ] - 2*\sum_{i=1}^{k-1}size[a_{i}]*dep[a_{i}]+2*\sum_{i=1}^{k-1}size[a_{i+1}]*dep[a_{i}] 2i=1k1size[ai]dep[ai]+2i=1k1size[ai+1]dep[ai]
= 2 ∗ ∑ i = 1 k − 1 s i z e [ a i + 1 ] ∗ d e p [ a i ] − 2 ∗ ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ a i ] = 2*\sum_{i=1}^{k-1}size[a_{i+1}]*dep[a_{i}]- 2*\sum_{i=1}^{k-1}size[a_{i}]*dep[a_{i}] =2i=1k1size[ai+1]dep[ai]2i=1k1size[ai]dep[ai]

直接相减出现的 s i z e [ a i ] − s i z e [ a i + 1 ] size[a_{i}]-size[a_{i+1}] size[ai]size[ai+1]难以处理,我们考虑进行一次错位
原式 = 2 ∗ ∑ i = 2 k s i z e [ a i ] ∗ d e p [ a i − 1 ] − 2 ∗ ∑ i = 1 k − 1 s i z e [ a i ] ∗ d e p [ a i ] =2*\sum_{i=2}^{k}size[a_{i}]*dep[a_{i-1}]- 2*\sum_{i=1}^{k-1}size[a_{i}]*dep[a_{i}] =2i=2ksize[ai]dep[ai1]2i=1k1size[ai]dep[ai]
= 2 ∗ ∑ i = 2 k s i z e [ a i ] ∗ d e p [ a i − 1 ] − 2 ∗ ∑ i = 2 k − 1 s i z e [ a i ] ∗ d e p [ a i ] ( d e p [ a 1 ] = d e p [ 1 ] = 0 ) =2*\sum_{i=2}^{k}size[a_{i}]*dep[a_{i-1}]- 2*\sum_{i=2}^{k-1}size[a_{i}]*dep[a_{i}] (dep[a_{1}]=dep[1]=0) =2i=2ksize[ai]dep[ai1]2i=2k1size[ai]dep[ai](dep[a1]=dep[1]=0)
= 2 ∗ s i z e [ a k ] ∗ d e p [ a k − 1 ] + 2 ∗ ∑ i = 2 k − 1 s i z e [ a i ] ∗ ( d e p [ a i − 1 ] − d e p [ a i ] ) =2*size[a_{k}]*dep[a_{k-1}] + 2*\sum_{i=2}^{k-1}size[a_{i}]*(dep[a_{i-1}]-dep[a_{i}]) =2size[ak]dep[ak1]+2i=2k1size[ai](dep[ai1]dep[ai])

将原式中的 − 2 ∗ s i z e [ u ] ∗ d e p [ u ] -2*size[u]*dep[u] 2size[u]dep[u]并入上式中,得到:
2 ∗ s i z e [ a k ] ∗ d e p [ a k − 1 ] − 2 ∗ s i z e [ a k ] ∗ d e p [ a k ] + 2 ∗ ∑ i = 2 k − 1 s i z e [ a i ] ∗ ( d e p [ a i − 1 ] − d e p [ a i ] ) 2*size[a_{k}]*dep[a_{k-1}] -2*size[a_{k}]*dep[a_k]+ 2*\sum_{i=2}^{k-1}size[a_{i}]*(dep[a_{i-1}]-dep[a_{i}]) 2size[ak]dep[ak1]2size[ak]dep[ak]+2i=2k1size[ai](dep[ai1]dep[ai])
= 2 ∗ ∑ i = 2 k s i z e [ a i ] ∗ ( d e p [ a i − 1 ] − d e p [ a i ] ) =2*\sum_{i=2}^{k}size[a_{i}]*(dep[a_{i-1}]-dep[a_{i}]) =2i=2ksize[ai](dep[ai1]dep[ai])

注意到 d e p [ a i ] − d e p [ a i − 1 ] dep[a_i]-dep[a_{i-1}] dep[ai]dep[ai1]是点 i i i 到其父节点的边权,定义为 f v [ i ] fv[i] fv[i]
故原式等于
∑ i = 1 n d e p [ i ] + n ∗ d e p [ u ] − 2 ∗ ∑ i = 2 k s i z e [ a i ] ∗ f v [ a i ] \sum_{i=1}^{n}dep[i] +n*dep[u]-2*\sum_{i=2}^{k}size[a_{i}]*fv[a_i] i=1ndep[i]+ndep[u]2i=2ksize[ai]fv[ai]
可以进行维护

现在考虑如何加入 [ L , R ] [L, R] [L,R]的限制。直接通过子树查询的方式进行,单次复杂度与树高约为线性关系,不可以接受。这时便要体会主席树的版本作用。
将点按照点权排序,一个一个加入,最终答案便是 R R R对应版本的主席树的答案减去 L L L个对应版本的前一个版本的主席树的答案。

每次加入一个点的时候,树的形态不发生变化, f v [ i ] fv[i] fv[i]不发生变化,只有 s i z e [ i ] size[i] size[i]发生变化。只需把加入的这个点到根的路径上的所有点的 s i z e size size进行 + 1 +1 +1即可,查询时从当前指定的点出发,向上统计 ∑ s i z e [ i ] ∗ f v [ i ] \sum size[i]*fv[i] size[i]fv[i]。这是可以通过树链剖分维护的。由于空间限制,标记永久化是一个不错的选择。

思路总结

对主席树的认识不要僵化,体会其有关版本的作用。例如对于区间 [ l , r ] [l, r] [l,r]统计在 [ L , R ] [L, R] [L,R]之间的数的个数问题,其实也可以按照数值排序后一个个插入点,统计第 R R R个版本的树中位置是 [ l , r ] [l, r] [l,r]的有多少,减去第 L − 1 L-1 L1颗树的答案。不同版本不一定是按照位置,也不一定是按照权值(虽然我目前就见过这俩),思路要灵活。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <bits/stdc++.h>
#define MAXN 200050
#define ri register int
#define il inline
using namespace std;
typedef long long LL;
int n, q, A, ecnt, numcnt, root[MAXN], rtcnt, num[MAXN];
int tcnt, top[MAXN], id[MAXN], fa[MAXN], fv[MAXN], son[MAXN], size[MAXN];
LL lastans, dsum[MAXN], dep[MAXN];
struct Node {
    int id, ag;
    bool operator < (const Node &x) const {
        if(ag == x.ag) return id < x.id;
        return ag < x.ag;
    }
}mon[MAXN];
struct node {
    int v, w;
    node *next;
}pool[MAXN<<2], *h[MAXN];
struct NODE {
    int ls, rs, lazy;
    LL sum, esum;
    void init() {
        ls = rs = lazy = 0, esum = sum = 0;
    }
}t[MAXN<<7];
il void adde(int u, int v, int w) {
    node *p = &pool[ecnt++], *q = &pool[ecnt++];
    *p = node {v, w, h[u]}, h[u] = p;
    *q = node {u, w, h[v]}, h[v] = q;
}
void dfs1(int u) {
    size[u] = 1;
    for(node *p = h[u]; p; p = p->next) {
        if(p->v == fa[u]) continue;
        dep[p->v] = dep[u]+p->w, fa[p->v] = u, fv[p->v] = p->w, dfs1(p->v), size[u] += size[p->v];
        if(size[p->v] > size[son[u]]) son[u] = p->v;
    }
}
void dfs2(int u, int t) {
    id[u] = ++tcnt, top[u] = t, num[tcnt] = fv[u];
    if(!son[u]) return ;
    dfs2(son[u], t);
    for(node *p = h[u]; p; p = p->next) 
        if(!id[p->v]) dfs2(p->v, p->v);
}
void build(int &u, int l, int r) {
    int tmp = u; u = ++rtcnt, t[u] = t[tmp];
    if(l == r) return (void)(t[u].esum = num[l]);
    int mid = (l+r)>>1;
    build(t[u].ls, l, mid);
    build(t[u].rs, mid+1, r);
    t[u].esum = t[t[u].ls].esum + t[t[u].rs].esum;
}
void change(int &u, int l, int r, int tl, int tr) {
    int tmp = u; u = ++rtcnt, t[u] = t[tmp];
    if(tl <= l && r <= tr) {
        ++t[u].lazy;
        t[u].sum += t[u].esum;
        return ;
    }
    int mid = (l+r)>>1;
    if(tl <= mid) change(t[u].ls, l, mid, tl, tr);
    if(mid < tr) change(t[u].rs, mid+1, r, tl, tr);
    t[u].sum = t[t[u].ls].sum + t[t[u].rs].sum + t[u].esum*t[u].lazy;
}
void Change(int u, int ver) {
    while(top[u] != 1) {
        change(root[ver], 1, n, id[top[u]], id[u]);
        u = fa[top[u]];
    }
    change(root[ver], 1, n, 1, id[u]);
}
LL query(int u, int l, int r, int tl, int tr, int add) {
    if(tl <= l && r <= tr) return t[u].sum + t[u].esum*add;
    int mid = (l+r)>>1; LL ret = 0;
    add += t[u].lazy;
    if(tl <= mid) ret += query(t[u].ls, l, mid, tl, tr, add);
    if(mid < tr) ret += query(t[u].rs, mid+1, r, tl, tr, add);
    return ret;
}
LL Query(int u, int ver) {
    LL ret = 0;
    while(top[u] != 1) {
        ret += query(root[ver], 1, n, id[top[u]], id[u], 0);
        u = fa[top[u]];
    }
    ret += query(root[ver], 1, n, 1, id[u], 0);
    return ret;
}
il LL calc(int u, int ver) {
    return dsum[ver] + ver*dep[u] - 2*Query(u, ver);
}
int main() {
    int u, v, c;
    scanf("%d%d%d", &n, &q, &A);
    for(ri i = 1; i <= n; ++i) scanf("%d", &mon[i].ag), mon[i].id = i;
    for(ri i = 1; i < n; ++i) scanf("%d%d%d", &u, &v, &c), adde(u, v, c);
    dfs1(1), dfs2(1, 1);
    sort(mon+1, mon+n+1);
    build(root[0], 1, n);
    for(ri i = 1; i <= n; ++i) 
        dsum[i] = dsum[i-1] + dep[mon[i].id], 
        root[i] = root[i-1], Change(mon[i].id, i);
    while(q--) {
        LL l, r; int L, R;
        scanf("%d%lld%lld", &u, &l, &r);
        l += lastans, r += lastans;
        L = min(l%A, r%A), R = max(l%A, r%A);
        L = lower_bound(mon+1, mon+n+1, Node{0, L})-mon, R = upper_bound(mon+1, mon+n+1, Node{MAXN, R})-mon-1;
        //注意此细节 
        printf("%lld\n", lastans = calc(u, R)-calc(u, L-1));
    }
    return 0;
}
根据引用\[1\]和引用\[2\]的描述,题目中的影魔拥有n个灵魂,每个灵魂有一个战斗力ki。对于任意一对灵魂对i,j (i<j),如果不存在ks (i<s<j)大于ki或者kj,则会为影魔提供p1的攻击力。另一种情况是,如果存在一个位置k,满足ki<c<kj或者kj<c<ki,则会为影魔提供p2的攻击力。其他情况下的灵魂对不会为影魔提供攻击力。 根据引用\[3\]的描述,我们可以从左到右进行枚举。对于情况1,当扫到r\[i\]时,更新l\[i\]的贡献。对于情况2.1,当扫到l\[i\]时,更新区间\[i+1,r\[i\]-1\]的贡献。对于情况2.2,当扫到r\[i\]时,更新区间\[l\[i\]+1,i-1\]的贡献。 因此,对于给定的区间\[l,r\],我们可以根据上述方法计算出区间内所有下标二元组i,j (l<=i<j<=r)的贡献之和。 #### 引用[.reference_title] - *1* *3* [P3722 [AH2017/HNOI2017]影魔(树状数组)](https://blog.csdn.net/li_wen_zhuo/article/details/115446022)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [洛谷3722 AH2017/HNOI2017 影魔 线段树 单调栈](https://blog.csdn.net/forever_shi/article/details/119649910)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值