题意:给了三个字符串,然后问有多少种方法使第一个字符串的子串和第二个字符串的子串可以组合成第三个字符串。
题解:问组成方法数量的dp题总让人心塞。。。看了题解,f[i][j][k]表示第一个字符串前i个字符第二个字符串前j个字符的子串能有多少种方法组合成第三个字符串前k个字符,但是需要添加f1[i][j][k]和f2[i][j][k]分别对应第一和第二个字符串的f数组,使f[i][j][k] = f1[i][j][k] + f2[i][j][k],因为当s1[i] == s2[j] == s3[k]时,这种情况无法计算。
#include <stdio.h>
#include <string.h>
const int N = 65;
const int MOD = 10007;
char s1[N], s2[N], s3[N];
int f[N][N][N], f1[N][N][N], f2[N][N][N];
int main() {
int t;
scanf("%d", &t);
while (t--) {
memset(f, 0, sizeof(f));
memset(f1, 0, sizeof(f1));
memset(f2, 0, sizeof(f2));
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
f[i][j][0] = f1[i][j][0] = f2[i][j][0] = 1;
scanf("%s%s%s", s1 + 1, s2 + 1, s3 + 1);
int len1 = strlen(s1 + 1);
int len2 = strlen(s2 + 1);
int len3 = strlen(s3 + 1);
for (int k = 1; k <= len3; k++)
for (int i = 0; i <= len1; i++)
for (int j = 0; j <= len2; j++) {
if (i) {
f1[i][j][k] = f1[i - 1][j][k];
if (s1[i] == s3[k])
f1[i][j][k] = (f1[i][j][k] + f[i - 1][j][k - 1]) % MOD;
}
if (j) {
f2[i][j][k] = f2[i][j - 1][k];
if (s2[j] == s3[k])
f2[i][j][k] = (f2[i][j][k] + f[i][j - 1][k - 1]) % MOD;
}
f[i][j][k] = (f1[i][j][k] + f2[i][j][k]) % MOD;
}
printf("%d\n", f[len1][len2][len3]);
}
return 0;
}