uva 11081(dp)

题意:给了三个字符串,然后问有多少种方法使第一个字符串的子串和第二个字符串的子串可以组合成第三个字符串。

题解:问组成方法数量的dp题总让人心塞。。。看了题解,f[i][j][k]表示第一个字符串前i个字符第二个字符串前j个字符的子串能有多少种方法组合成第三个字符串前k个字符,但是需要添加f1[i][j][k]和f2[i][j][k]分别对应第一和第二个字符串的f数组,使f[i][j][k] = f1[i][j][k] + f2[i][j][k],因为当s1[i] == s2[j] == s3[k]时,这种情况无法计算。

#include <stdio.h>
#include <string.h>
const int N = 65;
const int MOD = 10007;
char s1[N], s2[N], s3[N];
int f[N][N][N], f1[N][N][N], f2[N][N][N];

int main() {
	int t;
	scanf("%d", &t);
	while (t--) {
		memset(f, 0, sizeof(f));
		memset(f1, 0, sizeof(f1));
		memset(f2, 0, sizeof(f2));
		for (int i = 0; i < N; i++)
			for (int j = 0; j < N; j++)
				f[i][j][0] = f1[i][j][0] = f2[i][j][0] = 1;
		scanf("%s%s%s", s1 + 1, s2 + 1, s3 + 1);
		int len1 = strlen(s1 + 1);
		int len2 = strlen(s2 + 1);
		int len3 = strlen(s3 + 1);
		for (int k = 1; k <= len3; k++)
			for (int i = 0; i <= len1; i++)
				for (int j = 0; j <= len2; j++) {
					if (i) {
						f1[i][j][k] = f1[i - 1][j][k];
						if (s1[i] == s3[k])
							f1[i][j][k] = (f1[i][j][k] + f[i - 1][j][k - 1]) % MOD;
					}
					if (j) {
						f2[i][j][k] = f2[i][j - 1][k];
						if (s2[j] == s3[k])
							f2[i][j][k] = (f2[i][j][k] + f[i][j - 1][k - 1]) % MOD;
					}
					f[i][j][k] = (f1[i][j][k] + f2[i][j][k]) % MOD;
				}
		printf("%d\n", f[len1][len2][len3]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值