题意:有从1到n的数字组成一个无向连通图,给出了连通情况,然后给出一个数字序列,问这个序列要求相邻的点要么相等要么在图中是直接连通的,问最少修改序列中的几个点可以让序列满足要求。
题解:f[i][j]表示前i个数组成的序列以数字j结尾的最少修改点的数量,那么f[i][j] = min{f[i][j],f[i - 1][k] + (d[i] != j)},此时j==k或g[j][k] == 1。最后f[len][k]所有数字过一遍选出最小值就可以了。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 205;
const int INF = 0x3f3f3f3f;
int n, m, g[N][N], d[N], f[N][N];
int main() {
int t;
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &m);
memset(g, 0, sizeof(g));
int a, b;
for (int i = 0; i < m; i++) {
scanf("%d%d", &a, &b);
g[a][b] = g[b][a] = 1;
}
scanf("%d", &m);
for (int i = 1; i <= m; i++)
scanf("%d", &d[i]);
memset(f, INF, sizeof(f));
for (int i = 1; i <= n; i++)
f[1][i] = (i != d[1]);
for (int i = 2; i <= m; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
if (j == k || g[j][k])
f[i][j] = min(f[i][j], f[i - 1][k] + (j != d[i]));
int res = INF;
for (int i = 1; i <= n; i++)
res = min(res, f[m][i]);
printf("%d\n", res);
}
return 0;
}