题意:有一个机器人要杀死其他n(1 <= n <= 16)个机器人,他自己配备了一个武器,并且给出了这个武器能杀死的敌人,如101表示他能杀死第1和第3个敌人,这样他就能得到第1和第3号敌人的武器,从而杀死更多的敌人,问他杀死所有的敌人的方法数。
题解:因为敌人数最多是16个,很容易想到应该是状态压缩dp,可以用f[S]表示状态S下进制位为1的敌人全被杀死的方案数,那么结果就是f[(1 << n) - 1],如果拿掉了状态S中的杀死第j个人能得到的武器,剩下的人如果能杀死第j个人,就把这个状态的方法数加到f[S]中。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 20;
const int M = (1 << 16) + 100;
int n, w[N], s[M];
char str[N];
long long f[M];
int main() {
int t, cas = 1;
scanf("%d", &t);
while (t--) {
memset(f, 0, sizeof(f));
scanf("%d", &n);
int all = (1 << n) - 1;
for (int i = 0; i < n + 1; i++) {
scanf("%s", str);
w[i] = 0;
for (int j = 0; j < n; j++)
if (str[j] == '1')
w[i] |= (1 << j);
}
//s[i]表示在状态i下杀死进制位是1的所有能杀死的人
//f[i]表示在状态i下的能把进制位是1的杀死的方案数
s[0] = w[0];
for (int i = 1; i <= all; i++) {
s[i] = w[0];
for (int j = 0; j < n; j++)
if ((i >> j) & 1)
s[i] |= w[j + 1];
}
f[0] = 1;
for (int i = 1; i <= all; i++) {
for (int j = 0; j < n; j++)
if ((s[i ^ (1 << j)] >> j) & 1)
f[i] += f[i ^ (1 << j)];
}
printf("Case %d: %lld\n", cas++, f[all]);
}
return 0;
}