二叉排序树
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
typedef int TElemType;//TElemType这里假设为int,可以根据需要进行更改
typedef int Status;//Status是函数的类型,其值是函数结果状态代码,如OK等
//结点结构
typedef struct biTNode
{
TElemType data;//结点数据
struct biTNode *lchild,*rchild;//左右孩子指针
}BiTNode;
/*递归查找二叉排序树T中是否存在key,*/
/*指针f指向T的双亲,其初始调用值为NULL*/
/*若查找成功,则指针p指向该数据元素结点,并返回TRUE*/
/*否则指针p指向查找路径上访问的最后一个结点并返回FALSE */
Status SearchBST(BiTNode *T, int key, BiTNode *f, BiTNode **p)
{
if (!T)//查找不成功
{
*p = f;
return FALSE;
}
else if (key==T->data)//查找成功
{
*p = T;
return TRUE;
}
else if (key<T->data)
return SearchBST(T->lchild, key, T, p);//在左子树中继续查找
else
return SearchBST(T->rchild, key, T, p);//在右子树中继续查找
}
/*从二叉排序树中删除结点p,并重接它的左或右子树。*/
Status Delete(BiTNode **p)
{
BiTNode *q,*s;
if((*p)->rchild==NULL)//右子树空则只需重接它的左子树(待删结点是叶子也走此分支)
{
q=*p;
*p=(*p)->lchild;
free(q);
}
else if((*p)->lchild==NULL)//只需重接它的右子树
{
q=*p;
*p=(*p)->rchild;
free(q);
}
else//左右子树均不空
{
q=*p;
s=(*p)->lchild;
while(s->rchild)//转左,然后向右到尽头(找待删结点的前驱)
{
q=s;
s=s->rchild;
}
(*p)->data=s->data;//s指向被删结点的直接前驱(将被删结点前驱的值取代被删结点的值)
if(q!=*p)
q->rchild=s->lchild;//重接q的右子树
else
q->lchild=s->lchild;//重接q的左子树
free(s);
}
return TRUE;
}
/*若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点,*/
/*并返回TRUE;否则返回FALSE。*/
Status DeleteBST(BiTNode **T,int key)
{
if(!*T)//不存在关键字等于key的数据元素
return FALSE;
else
{
if (key==(*T)->data)//找到关键字等于key的数据元素
return Delete(T);
else if (key<(*T)->data)
return DeleteBST(&(*T)->lchild,key);
else
return DeleteBST(&(*T)->rchild,key);
}
}
/*当二叉排序树T中不存在关键字等于key的数据元素时,*/
/*插入key并返回TRUE,否则返回FALSE*/
Status InsertBST(BiTNode **T, int key)
{
BiTNode *p,*s;
if (!SearchBST(*T, key, NULL, &p))//查找不成功
{
s = (BiTNode *)malloc(sizeof(BiTNode));
s->data = key;
s->lchild = s->rchild = NULL;
if (!p)
*T = s;//插入s为根结点
else if (key<p->data)
p->lchild = s;//插入s为左孩子
else
p->rchild = s;//插入s为右孩子
return TRUE;
}
else
return FALSE;//树中已有关键字相同的结点,不再插入
}
int main()
{
BiTNode *T=NULL;
int i;
int a[10]={62,88,58,47,35,73,51,99,37,93};
for(i=0;i<10;i++)
{
InsertBST(&T, a[i]);
}
DeleteBST(&T,93);
DeleteBST(&T,47);
return 0;
}