-
6 7 1 2 3 1 3 5 2 4 1 3 4 2 3 5 3 4 6 4 5 6 2
样例输出
-
5
描述
小Hi和小Ho住在P市,P市是一个很大很大的城市,所以也面临着一个大城市都会遇到的问题:交通拥挤。
小Ho:每到周末回家感觉堵车都是一种煎熬啊。
小Hi:平时交通也还好,只是一到上下班的高峰期就会比较拥挤。
小Ho:要是能够限制一下车的数量就好了,不知道有没有办法可以知道交通系统的最大承受车流量,这样就可以限制到一个可以一直很顺畅的数量了。
小Hi:理论上是有算法的啦。早在1955年,T.E.哈里斯就提出在一个给定的网络上寻求两点间最大运输量的问题。并且由此产生了一个新的图论模型:网络流。
小Ho:那具体是啥?
小Hi:用数学的语言描述就是给定一个有向图G=(V,E),其中每一条边(u,v)均有一个非负数的容量值,记为c(u,v)≥0。同时在图中有两个特殊的顶点,源点S和汇点T。
举个例子:
其中节点1为源点S,节点6为汇点T。
我们要求从源点S到汇点T的最大可行流量,这个问题也被称为最大流问题。
在这个例子中最大流量为5,分别为:1→2→4→6,流量为1;1→3→4→6,流量为2;1→3→5→6,流量为2。
小Ho:看上去好像挺有意思的,你让我先想想。
输入
第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。
第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。
给定的图中默认源点为1,汇点为N。可能有重复的边。
输出
第1行:1个整数,表示给定图G的最大流。
Edmond-Karp算法的思路其实就是Ford-Fulkerson算法。
Edmond-Karp流程:
1. 将最初的图G转化为残留网络。
2. 使用BFS反复寻找源点到汇点之间的增广路径。
若存在增广路径,对路径上的流量进行相应修改(总流量增加,路径上各边容量相应减少,反向边容量相应增加)。
3. 找不到增广路时,当前的流量就是最大流。
#include<iostream>
#include<stdio.h>
using namespace std;
#include<queue>
#include<vector>
#include<string.h>
#include<algorithm>
#define maxn 0x7fffffff
#define MS(a,b) memset(a,b,sizeof(a))
int f,pre[6000],head[6000],vis[6000],s,t;
struct node
{
int u,v,next,c;
}edge[60000];
void add(int u,int v,int c)
{
edge[f].u=u;edge[f].v=v;edge[f].c=c;
edge[f].next=head[u];head[u]=f++;
edge[f].u=v;edge[f].v=u;edge[f].c=0;
edge[f].next=head[v];head[v]=f++;
}
int bfs()
{
int i;
queue<int>q;
q.push(s);
vis[s]=1;
pre[s]=-1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(edge[i].c>0&&!vis[v])
{
pre[v]=i;
vis[v]=1;
if(v==t)return 1;
q.push(v);
}
}
}
return 0;
}
int EK()
{
int maxflow=0;
int flow ,i;
while(bfs())
{ MS(vis,0);
i=pre[t];
flow=maxn;
while(i!=-1)
{
flow=min(flow,edge[i].c);//每次bfs所能增加的流量。(正向边)
i=pre[edge[i].u];
}
i=pre[t];
while(i!=-1)
{
edge[i].c-=flow;
edge[i^1].c+=flow;
i=pre[edge[i].u];
}
maxflow+=flow;
}
return maxflow;
}
int main()
{
int n,m,i,a,b,c;
cin>>n>>m;
f=0;
MS(head,-1);
for(i=0;i<m;i++)
{
cin>>a>>b>>c;
add(a,b,c);
}
s=1;t=n;
cout<<EK()<<endl;
return 0;
}