hihocoder #1369 : 网络流一·Ford-Fulkerson算法

时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB
描述

小Hi和小Ho住在P市,P市是一个很大很大的城市,所以也面临着一个大城市都会遇到的问题:交通拥挤。

小Ho:每到周末回家感觉堵车都是一种煎熬啊。

小Hi:平时交通也还好,只是一到上下班的高峰期就会比较拥挤。

小Ho:要是能够限制一下车的数量就好了,不知道有没有办法可以知道交通系统的最大承受车流量,这样就可以限制到一个可以一直很顺畅的数量了。

小Hi:理论上是有算法的啦。早在1955年,T.E.哈里斯就提出在一个给定的网络上寻求两点间最大运输量的问题。并且由此产生了一个新的图论模型:网络流

小Ho:那具体是啥?

小Hi:用数学的语言描述就是给定一个有向图G=(V,E),其中每一条边(u,v)均有一个非负数的容量值,记为c(u,v)≥0。同时在图中有两个特殊的顶点,源点S和汇点T。

举个例子:

其中节点1为源点S,节点6为汇点T。

我们要求从源点S到汇点T的最大可行流量,这个问题也被称为最大流问题

在这个例子中最大流量为5,分别为:1→2→4→6,流量为1;1→3→4→6,流量为2;1→3→5→6,流量为2。

小Ho:看上去好像挺有意思的,你让我先想想。

提示:Ford-Fulkerson算法

 
输入

第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。

第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。

给定的图中默认源点为1,汇点为N。可能有重复的边。

输出

第1行:1个整数,表示给定图G的最大流。

样例输入
6 7
1 2 3
1 3 5
2 4 1
3 4 2
3 5 3
4 6 4
5 6 2
样例输出
5

Edmond-Karp算法的思路其实就是Ford-Fulkerson算法。

Edmond-Karp流程:

1. 将最初的图G转化为残留网络

2. 使用BFS反复寻找源点到汇点之间的增广路径。

若存在增广路径,对路径上的流量进行相应修改(总流量增加,路径上各边容量相应减少,反向边容量相应增加)。

3. 找不到增广路时,当前的流量就是最大流。

#include<iostream>
#include<stdio.h>
using namespace std;
#include<queue>
#include<vector>
#include<string.h>
#include<algorithm>
#define maxn 0x7fffffff
#define MS(a,b) memset(a,b,sizeof(a))
int f,pre[6000],head[6000],vis[6000],s,t;
struct node
{
    int u,v,next,c;
}edge[60000];
void add(int u,int v,int c)
{
    edge[f].u=u;edge[f].v=v;edge[f].c=c;
    edge[f].next=head[u];head[u]=f++;
    edge[f].u=v;edge[f].v=u;edge[f].c=0;
    edge[f].next=head[v];head[v]=f++;
}
int bfs()
{
    int i;
    queue<int>q;
    q.push(s);
    vis[s]=1;
    pre[s]=-1;
   while(!q.empty())
   {
     int u=q.front();
     q.pop();
    for(i=head[u];~i;i=edge[i].next)
      {
          int v=edge[i].v;
          if(edge[i].c>0&&!vis[v])
          {
              pre[v]=i;
              vis[v]=1;
              if(v==t)return 1;
              q.push(v);
          }
      }
   }
   return 0;
}
int EK()
{
   int maxflow=0;
   int flow ,i;
   while(bfs())
   {  MS(vis,0);
       i=pre[t];
       flow=maxn;
       while(i!=-1)
       {
           flow=min(flow,edge[i].c);//每次bfs所能增加的流量。(正向边)
           i=pre[edge[i].u];
       }
        i=pre[t];
        while(i!=-1)
        {
            edge[i].c-=flow;
            edge[i^1].c+=flow;
            i=pre[edge[i].u];
        }
        maxflow+=flow;
   }
   return maxflow;
}
int main()
{
     int n,m,i,a,b,c;
     cin>>n>>m;
     f=0;
     MS(head,-1);
     for(i=0;i<m;i++)
     {
         cin>>a>>b>>c;
         add(a,b,c);
     }
     s=1;t=n;
     cout<<EK()<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值