- 博客(8)
- 资源 (3)
- 收藏
- 关注
转载 相关向量机
相关向量机(Relevance Vector Machine,简称RVM)是Micnacl E.Tipping于2000年提出的一种与SVM(Support Vector Machine)类似的稀疏概率模型,是一种新的监督学习方法。一、简介相关向量机(Relevance Vector Machine,RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量机(S
2017-05-08 16:31:29 2280
转载 java集合总结
来源:http://www.codeceo.com/article/java-collection-must-have.htmlListArrayList以数组实现。节约空间,但数组有容量限制。超出限制时会增加50%容量,用System.arraycopy()复制到新的数组,因此最好能给出数组大小的预估值。默认第一次插入元素时创建大小为10的数组。按数组下标访问元素–get(i)/set(i,e)
2016-12-05 20:13:57 301
原创 机器学习python之KNN
注:本文借鉴于《机器学习实战》这本书对于KNN的介绍在这里就不详细说了,在我的另一篇文章有。简单来说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。1.K-近邻算法优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高适用数据范围:数值型和标称型2.K-近邻算法一般流程(1)收集数据:可以使用任何方法(2)准备数据:距离
2016-12-05 19:22:11 382
原创 关于java初始化问题
1.初始化顺序:1.先父类,后子类2.先属性,后构造函数3.先静态,后非静态4.先静态属性,后静态代码块5.同一类型(非数据类型,指以上),按代码先后顺序(先静后动,先父后子,从上到下,先变量后构造)2.具体情况如下:2.1无继承情况下:对于静态变量、静态初始化块、变量、初始化块、构造器,它们的初始化顺序依次是(静态变量、静态初始化块)>(变量、初始化块)>
2016-12-01 21:32:05 427
原创 关于K最近邻分类算法(KNN)的综述
摘要作为一种非参数的分类算法, K近邻(KNN)算法是非常有效和容易实现的。 它已经广泛应用于分类、回归和模式识别等 。在应用KNN 算法解决问题的时候,要注意两个方面的问题:—样本权重和特征权重。针对传统的KNN分类算法的不足,出现了很多改进的KNN算法。本文对当前改进KNN的文本分类算法进行了全面的综述。1.引言 K最近邻(k-Nearest Neighbor,KN
2016-11-30 16:59:39 31626 1
原创 AttributeError: 'function' object has no attribute '_name_'
def log(text): def decorator(func): def wrapper(*args,**kw): print '%s %s():'%(text,func._name_) return func(*args,**kw) return wrapper return dec
2016-10-20 21:14:56 6123 1
原创 matlab的简单使用
1.元胞数组转化为矩阵a=cell2mat(B); %将元胞数组B转化为矩阵a2.矩阵数据导出到txt文件ave 'data.txt' a -ascii %将矩阵a导出到data.txt文件中3.创建元胞数组4.获取元胞数组内的数据5.创建mat文件6.
2016-09-27 21:46:54 981
转载 BP神经网络的分类
本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里
2016-09-26 15:27:26 5553
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人