梯度下降法理解

一个标量函数\varphi的梯度记为:

\nabla \varphi 或  \rm grad \varphi

其中\nabla(nabla)表示矢量微分算子。

在三维情况,该表达式在直角坐标中扩展为:

\nabla \phi =\begin{pmatrix}{\frac{\partial \phi}{\partial x}},  {\frac{\partial \phi}{\partial y}}, {\frac{\partial \phi}{\partial z}}\end{pmatrix}


    一个多元函数的梯度方向是该函数值增大最陡的方向。对于一元函数而言,梯度方向是沿着曲线切线的,然后取切线向上增长的方向为梯度方向。对于二元或多元函数而言,梯度向量为函数F对每个变量的导数,该向量的方向就是梯度的方向。

    上图为一元二次函数的曲线图,可以看出:在最低点的左边部分,每一点的梯度方向值都是负值,因为每一点的斜率都是小于0的,所以当变量沿着梯度的方向递进,函数值越来越大,从上图可以很明显看出;同理右边,每一点的梯度方向都是大于0的,所以沿着梯度方向,函数值也是越来越大。所以,函数的梯度方向总是函数值越来越大的方向。因此,我们要想求最小值,就应该沿着梯度的反方向进行,这正是梯度下降法的原理。


下面是转载的一个简单例子,能够帮助去理解梯度下降法的整个运算过程:




我们知道,函数的曲线如下:


  1. /* 
  2.  * @author:郑海波 
  3.  * blog.csdn.net/nuptboyzhb/ 
  4.  * 2012-12-11 
  5.  */  
  6. #include <iostream>  
  7. #include <math.h>  
  8. using namespace std;  
  9. int main()  
  10. {  
  11.     double e=0.00001;//定义迭代精度  
  12.     double alpha=0.5;//定义迭代步长  
  13.     double x=0;//初始化x  
  14.     double y0=x*x-3*x+2;//与初始化x对应的y值  
  15.     double y1=0;//定义变量,用于保存当前值  
  16.     while (true)  
  17.     {  
  18.         x=x-alpha*(2.0*x-3.0);  
  19.         y1=x*x-3*x+2;  
  20.         if (abs(y1-y0)<e)//如果2次迭代的结果变化很小,结束迭代  
  21.         {  
  22.             break;  
  23.         }  
  24.         y0=y1;//更新迭代的结果  
  25.     }  
  26.     cout<<"Min(f(x))="<<y0<<endl;  
  27.     cout<<"minx="<<x<<endl;  
  28.     return 0;  
  29. }


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值