梯度下降法(Gradient descent)

梯度下降法是用于求解函数极小值的迭代算法,尤其在机器学习中广泛应用。通过计算梯度(函数增长最快方向)并沿其反方向更新自变量,逐步逼近极小值点。在求f(x)=x^2和f(x,y)=(x-10)^2+(y-10)^2的极小值实例中,展示了梯度下降法的计算过程,强调了步长选择的重要性以及其在凸函数最小化中的作用。" 116510634,10544505,解决Matlab并行运算加载.mat文件报错,"['Matlab编程', '并行计算', '数据加载']
摘要由CSDN通过智能技术生成

梯度下降法(Gradient descent)

标签: 机器学习


1.梯度下降法有什么用

梯度下降法用来求函数的极小值,且是一种迭代算法,由于计算效率高,在机器学习中常常使用。梯度下降法经常求**凸函数(convex function)**的极小值,因为凸函数只有一个极小值,使用梯度下降法求得的极小值就是最小值。

与其对应的有梯度上升法(Gradient ascent),用来求函数的极大值,两种方法原理一样,只是计算的过程中正负号不同而已。

2.什么是梯度

先看看维基百科:

标量场中某一点的梯度指向在这点标量场增长最快的方向。

感觉略微抽象,可以用山的高度来解释一下。假设有一个人站在山上的某一点,他通过观察发现了一条“最陡”的路,那么这条路的方向就是梯度所指的方向。

需要强调一下,梯度是一个矢量,方向导数是一个标量,梯度所指向的方向是方向导数最大的方向,且梯度的模和方向导数的最大值相等。

求梯度的方法很简单,对每一个自变量求偏导数,然后将其偏导数作为自变量方向的坐标即可。梯度的符号为 ∇ \nabla ,则函数 f ( x , y ) f(x,y) f(x,y)的梯度为:
∇ f ( x , y ) = ( ∂ f ( x , y ) ∂ x , ∂ f ( x , y ) ∂ y ) \nabla f(x,y)=\left( \frac {\partial f(x,y)}{\partial x},\frac {\partial f(x,y)}{\partial y} \right) f(x,y)=(xf(x,y),yf(x,y

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值