很多排序算法时间复杂度都是O(n2),也有部分排序算法时间复杂度是O(nlogn)。而桶式排序却能实现O(n)的时间复杂度。但它也有自己的不足,首先是空间复杂度比较高,需要的额外开销大。其次,局限性也很明显。待排序的元素都要在一定的范围内等等。
桶式排序是一种分配排序。分配排序的特定是不需要进行关键码的比较,但前提是要知道待排序列的一些具体情况。
同时排序有两个数组的空间开销,一个存放待排序数组,一个就是所谓的桶,比如待排序值是从0到m-1,那就需要m个桶,这个桶数组就要至少m个空间。
#include <iostream>
#define N 10 //N表示要排序数组的数字个数
#define M 22 //M表示要排序元素中的最大值(元素值从0到M)
using namespace std;
//桶式排序,注意对原数组要使用一个临时数组
template <class T>
void bucketSort(T arr[],int n)
{
//定义一个数组,存放各数字出现的次数。初始值均赋值为0
int times[M+1]={0};
//定义一个临时数组
T * tempArry = new T[n];
//统计各数字出现的次数
for(int i=0;i<n;i++)
{
if(arr[i]>=0 && arr[i]<=M)
{
times[arr[i]]++;
}
else
{
cout<<"数组中元素值越界!"<<endl;
exit(-1);
}
}
//重新组织存放出现次数的数组
for(int i=1;i<M+1;i++)
{
times[i]+=times[i-1];
}
//对元素进行分配(即是所谓的“收集”)(从后面开始)
for(int i=n-1;i>=0;i--)
{
tempArry[--times[arr[i]]]=arr[i];
}
//把临时数组中的元素复制到原数组中
for(int i=0;i<n;i++)
{
arr[i]=tempArry[i];
}
}
//输出数组内容
template <class T>
void print(T arr[],int size)
{
for(int i=0;i<size;i++)
{
cout<<arr[i]<<" ";
}
cout<<endl;
}
int main()
{
//int arr[N]={5,4,1,3,9,12,7,22,0,-10,12,33,-22,0,88,123,-45,345,-98,-666};
//int arr[N]={5,4,10,5,9};
int arr[N]={5,4,0,3,9,22,7,22,0,10};
cout<<"原始数据为:"<<endl;
print(arr,N);
bucketSort(arr,N);
cout<<"排序后:"<<endl;
print(arr,N);
return 0;
}
基数排序,说白了就是进行多次的桶式排序。
template <class T>
void radixSort(T arr[],int n,int cou) //n表示数组内元素个数,cou表示位数
{
T *tempArr=new T[n]; //开辟一个临时数组
int times[radix]={0}; //存放进制内各数出现的次数
int rad=1; //动态变化的基数
T temp;
for(int i=0;i<cou;i++) //从低位到高位,依次进行判定
{
//一轮判定开始时,需要对times数组重置为0
for(int j=0;j<radix;j++)
{
times[j]=0;
}
//在倒数第i+1位上,对每个数字进行判断
for(int k=0;k<n;k++)
{
temp=(arr[k]/rad)%radix; //需要得到正在判定的这一位上的值
//对该位上的值进行判定是否越界(可有可无,加上判定的话程序的健壮性好一些)
if(temp>=0 && temp<radix)
{
times[temp]++;
}
else
{
cout<<"越界!"<<endl;
exit(0);
}
}
//对times数组进行重置
for(int i=1;i<radix;i++)
{
times[i]+=times[i-1];
}
//对原数组内的元素进行收集,放在临时数组中。(从后面开始)
for(int i=n-1;i>=0;i--)
{
temp=(arr[i]/rad)%radix;
tempArr[--times[temp]]=arr[i];
}
//把临时数组tempArr内的元素复制到arr数组中
for(int i=0;i<n;i++)
{
arr[i]=tempArr[i];
}
rad*=radix; //该趟循环结束,rad=rad*radix
}
}