桶式排序和基数排序

很多排序算法时间复杂度都是O(n2),也有部分排序算法时间复杂度是O(nlogn)。而桶式排序却能实现O(n)的时间复杂度。但它也有自己的不足,首先是空间复杂度比较高,需要的额外开销大。其次,局限性也很明显。待排序的元素都要在一定的范围内等等。

桶式排序是一种分配排序。分配排序的特定是不需要进行关键码的比较,但前提是要知道待排序列的一些具体情况。

同时排序有两个数组的空间开销,一个存放待排序数组,一个就是所谓的桶,比如待排序值是从0到m-1,那就需要m个桶,这个桶数组就要至少m个空间。


#include <iostream>
#define N 10			//N表示要排序数组的数字个数
#define M 22		//M表示要排序元素中的最大值(元素值从0到M)
using namespace std;

//桶式排序,注意对原数组要使用一个临时数组
template <class T>
void bucketSort(T arr[],int n)
{
	//定义一个数组,存放各数字出现的次数。初始值均赋值为0
	int times[M+1]={0};
	
	//定义一个临时数组
	T * tempArry = new T[n];

	//统计各数字出现的次数
	for(int i=0;i<n;i++)
	{
		if(arr[i]>=0 && arr[i]<=M)
		{
			times[arr[i]]++;
		}
		else
		{
			cout<<"数组中元素值越界!"<<endl;
			exit(-1);
		}
	}

	//重新组织存放出现次数的数组
	for(int i=1;i<M+1;i++)
	{
		times[i]+=times[i-1];
	}

	//对元素进行分配(即是所谓的“收集”)(从后面开始)
	for(int i=n-1;i>=0;i--)
	{
		tempArry[--times[arr[i]]]=arr[i];
	}

	//把临时数组中的元素复制到原数组中
	for(int i=0;i<n;i++)
	{
		arr[i]=tempArry[i];
	}
}

//输出数组内容
template <class T>
void print(T arr[],int size)
{
	for(int i=0;i<size;i++)
	{
		cout<<arr[i]<<"  ";
	}
	cout<<endl;
}

int main()
{
	//int arr[N]={5,4,1,3,9,12,7,22,0,-10,12,33,-22,0,88,123,-45,345,-98,-666};
	//int arr[N]={5,4,10,5,9};
	int arr[N]={5,4,0,3,9,22,7,22,0,10};

	cout<<"原始数据为:"<<endl;
	print(arr,N);

	bucketSort(arr,N);

	cout<<"排序后:"<<endl;
	print(arr,N);

	return 0;
}


基数排序,说白了就是进行多次的桶式排序。


template <class T>
void radixSort(T arr[],int n,int cou)	//n表示数组内元素个数,cou表示位数
{
	T *tempArr=new T[n];	//开辟一个临时数组
	int times[radix]={0};	//存放进制内各数出现的次数
	int rad=1;				//动态变化的基数
	T temp;

	for(int i=0;i<cou;i++)	//从低位到高位,依次进行判定
	{
		//一轮判定开始时,需要对times数组重置为0
		for(int j=0;j<radix;j++)
		{
			times[j]=0;
		}

		//在倒数第i+1位上,对每个数字进行判断
		for(int k=0;k<n;k++)
		{
			temp=(arr[k]/rad)%radix;	//需要得到正在判定的这一位上的值

			//对该位上的值进行判定是否越界(可有可无,加上判定的话程序的健壮性好一些)
			if(temp>=0 && temp<radix)
			{
				times[temp]++;
			}
			else
			{
				cout<<"越界!"<<endl;
				exit(0);
			}
		}

		//对times数组进行重置
		for(int i=1;i<radix;i++)
		{
			times[i]+=times[i-1];
		}

		//对原数组内的元素进行收集,放在临时数组中。(从后面开始)
		for(int i=n-1;i>=0;i--)
		{	
			temp=(arr[i]/rad)%radix;
			tempArr[--times[temp]]=arr[i];
		}

		//把临时数组tempArr内的元素复制到arr数组中
		for(int i=0;i<n;i++)
		{
			arr[i]=tempArr[i];
		}

		rad*=radix;	//该趟循环结束,rad=rad*radix
	}
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值