凸优化第五章对偶 5.6 扰动及灵敏度分析

5.6 扰动及灵敏度分析

  1. 扰动的问题
  2. 全局不等式
  3. 局部灵敏度分析

扰动的问题

原问题和对偶问题

\begin{matrix} minimize \, \, f_0(x)\\subject \, \, to \, \, f_i(x)\leq 0,i=1,\cdots m\\h_i(x)=0,i=1,\cdots p \end{matrix}&maximize \, \, g(\lambda,v) \\subject \, \, to \, \, \lambda \succeq 0

扰动的问题:

\begin{matrix} minimize \, \, f_0(x)\\subject \, \, to \, \, f_i(x)\leq u_i,i=1,\cdots m\\h_i(x)=l_i,i=1,\cdots p \end{matrix}

u_i> 0表示放宽约束,u_i<0表示加紧约束。记P^*(u,l)为扰动后问题的最优值。

扰动后的对偶问题:

&maximize \, \, g(\lambda,v)-u ^T\lambda-l^Tv \\subject \, \, to \, \, \lambda \succeq 0

全局不等式

假设强对偶性成立,且对偶问题可以达到最优值,且\lambda^*,v^*是未扰动的对偶问题的最优解,有如下结论:

p^*(u,l)\geq p^*(0,0)-(\lambda^*)^T u-(v^*)^Tl

证明:

根据强对偶性:p^*(0,0)=g(\lambda^*,v^*),假设x是扰动问题的任意可行解,根据定义,可知g(\lambda^*,v^*)\leq f_0(x)+\sum_{i=1}^m\lambda^*_if_i(x)+\sum_{i=1}^pu^*_ih_i(x)

又因为扰动后的约束条件变成:f_i(x)\leq u_i,i=1,\cdots m \\ h_i(x)=l_i,i=1,\cdots p

所以

g(\lambda^*,v^*)\leq f_0(x)+\sum_{i=1}^m\lambda^*_if_i(x)+\sum_{i=1}^pu^*_ih_i(x)\\ \leq f_0(x)+\sum_{i=1}^m\lambda^*_iu_i+\sum_{i=1}^pu^*_il_i=f_0(x)+(\lambda^*)^Tu+(v^*)^Tl

\Rightarrowf_0(x)\geq p^*(0,0)-(\lambda^*)^T u-(v^*)^Tl

\Rightarrow p^*(u,l)\geq p^*(0,0)-(\lambda^*)^T u-(v^*)^Tl

灵敏度解释

  1. 如果\lambda_i^*比较大,加强第i个约束,即u_i< 0,则最优值P^*(u,l)会大幅增加。
  2. 如果\lambda_i^*比较小,放松第i个约束,即u_i> 0,则最优值P^*(u,l)不会减小太多。
  3. 如果v_i^*比较大且大于0,l_i< 0,或者如果v_i^*比较大且小于0,l_i> 0,则最优值P^*(u,l)会大幅增加。
  4. 如果v_i^*比较小且大于0,l_i> 0,或者如果v_i^*比较大且小于0,l_i< 0,则最优值P^*(u,l)不会减少太多。

局部灵敏度分析

假设p^*(u,l)在u=0,l=0处可微,假设强对偶性成立,最优对偶变量\lambda^*,v^*可以和p^*在u=0,v=0处的梯度联系起来:

\lambda_i^*=-\frac{\partial P^*(0,0) }{\partial u_i},v_i^*=-\frac{\partial P^*(0,0) }{\partial l_i}

证明:

假设p^*可微,且强对偶性成立,扰动u=te_i,l=0,其中e_i是单位向量,第i个分量是1,

\lim_{t\rightarrow 0}\frac{P^*(te_i,0)-P^*(0,0)}{t}=\frac{\partial P^*(0,0) }{\partial u_i}

根据p^*(u,l)\geq p^*(0,0)-(\lambda^*)^T u-(v^*)^Tl

t>0时,

\frac{P^*(te_i,0)-P^*(0,0)}{t}\geq -(\lambda ^*)^T(te_i)/t=-\lambda_i^*

取极限t\rightarrow 0时,得到

\lim_{t\rightarrow 0}\frac{P^*(te_i,0)-P^*(0,0)}{t}=\frac{\partial P^*(0,0) }{\partial u_i}\geq -\lambda_i^*

t<0时,

\frac{P^*(te_i,0)-P^*(0,0)}{t}\leq -(\lambda ^*)^T(te_i)/t=-\lambda_i^*

取极限t\rightarrow 0时,得到

\lim_{t\rightarrow 0}\frac{P^*(te_i,0)-P^*(0,0)}{t}=\frac{\partial P^*(0,0) }{\partial u_i}\leq -\lambda_i^*

所以\lambda_i^*=-\frac{\partial P^*(0,0) }{\partial u_i}

同理v_i^*=-\frac{\partial P^*(0,0) }{\partial l_i}

解释:稍稍加强第i个不等式约束,即选择一个数值较小且小于零的u_i,会使得P^*增加大约-\lambda_i^*u_i,稍稍放松第i个约束,即选择一个数值较小且大于零的u_i,会使得P^*减小大约\lambda_i^*u_i

 

来源:https://blog.csdn.net/wangchy29/article/details/86929614

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值