代码随想录Day38 | Leetcode 509、70、746
动态规划DP问题的五部曲
第一,确定dp数组和其下标定义;
第二,确定递推公式;
第三,dp数组如何初始化(需要根据递推公式确定初始化);
第四,确定遍历顺序;
第五,举例推导dp数组,检查递推公式和初始化是否正确。
一、509 斐波那契数
题目链接:509 斐波那契数
核心:经典的动态规划问题(也可使用递归)
第一,dp数组表示斐波那契数列,dp[i]表示数字i对应的斐波那契数;
第二,递推公式:dp[i]=dp[i-1]+dp[i-2];
第三,初始化dp[0]和dp[1];
第四,当前数字的斐波那契数依赖于前两个数字的斐波那契数,因此遍历顺序从前往后。
int fib(int n) {
//动态规划法
if(n<=1)
return n;
vector<int> dp(n+1,0); //记录数列的值
dp[0]=0;
dp[1]=1;
for(int i=2;i<n+1;++i)
// dp[i]=dp[i-1]+dp[i-2]; //从2一直计算到n
{
int sum=dp[0]+dp[1]; //只记录当前元素的前两个元素序列值
dp[0]=dp[1]; //更新前两个序列值
dp[1]=sum; //更新dp[1],即当前i的序列值
}
return dp[1];
/*
//递归法
if(n<=1)
return n;
else
return fib(n-1)+fib(n-2);
*/
}
二、70 爬楼梯
题目链接:70 爬楼梯
核心:较为直观地,若需1阶到达楼顶,则只有1种方法;若需2阶到达楼顶,则有2种方法,若需3阶到达楼顶,则可以从1阶开始爬2阶,或者从2阶开始爬1阶,也就是说dp[i]由dp[i-1]和dp[i-2]确定。
第一,dp数组表示不同阶数对应的方法,dp[i]表示需要i到达楼顶的方法数;
第二,递推公式:dp[i]=dp[i-1]+dp[i-2];
第三,dp数组的初始化:dp[0]和dp[1];
第三,dp[i]依赖于前两个元素值,类似斐波那契数列,从前往后遍历。
int climbStairs(int n) {
//动态规划,类似斐波那契数列
if(n<=1)
return n; //必须有此限制,因为初始化到dp[2],避免空指针
//vector<int> dp(n+1,0);
int dp[3];
dp[0]=0;
dp[1]=1;
dp[2]=2;
for(int i=3;i<n+1;++i)
//dp[i]=dp[i-1]+dp[i-2]; //直接统计每个元素的数列值
{
int sum=dp[1]+dp[2];
dp[1]=dp[2];
dp[2]=sum;
}
return dp[2];
}
三、746 使用最小花费爬楼梯
题目链接:746 使用最小花费爬楼梯
核心:每次可以爬1个或2个台阶,意味着到达当前i阶数可以从i-1爬1个或者从i-2爬2个,只是为了所使用花费最小,则需要从两种方法中选择其一。
第一,dp数组表示爬到楼顶每个阶数的所需最小花费;
第二,递推公式:dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
第三,初始化:dp[0]和dp[1];
第四,遍历顺序:从前往后。
int minCostClimbingStairs(vector<int>& cost) {
//动态规划
vector<int> dp(cost.size()+1,0); //数组大小包括楼顶,故比cost大1
dp[0]=0; //从下标为0或1开始即这两个元素值为0
dp[1]=0;
for(int i=2;i<dp.size();++i)
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
return dp[cost.size()];
}