【C++编程能力提升】

动态规划DP问题的五部曲

第一,确定dp数组和其下标定义;
第二,确定递推公式;
第三,dp数组如何初始化(需要根据递推公式确定初始化);
第四,确定遍历顺序;
第五,举例推导dp数组,检查递推公式和初始化是否正确。

一、509 斐波那契数

题目链接:509 斐波那契数

核心:经典的动态规划问题(也可使用递归)
第一,dp数组表示斐波那契数列,dp[i]表示数字i对应的斐波那契数;
第二,递推公式:dp[i]=dp[i-1]+dp[i-2];
第三,初始化dp[0]和dp[1];
第四,当前数字的斐波那契数依赖于前两个数字的斐波那契数,因此遍历顺序从前往后。

    int fib(int n) {
        //动态规划法
        if(n<=1)
            return n;
        vector<int> dp(n+1,0);  //记录数列的值
        dp[0]=0;
        dp[1]=1;
        for(int i=2;i<n+1;++i)
        //    dp[i]=dp[i-1]+dp[i-2];  //从2一直计算到n
        {
            int sum=dp[0]+dp[1];    //只记录当前元素的前两个元素序列值
            dp[0]=dp[1];    //更新前两个序列值
            dp[1]=sum;      //更新dp[1],即当前i的序列值
        }
        return dp[1];

        /*
        //递归法
        if(n<=1)
            return n;
        else 
            return fib(n-1)+fib(n-2);
        */
    }

二、70 爬楼梯

题目链接:70 爬楼梯

核心:较为直观地,若需1阶到达楼顶,则只有1种方法;若需2阶到达楼顶,则有2种方法,若需3阶到达楼顶,则可以从1阶开始爬2阶,或者从2阶开始爬1阶,也就是说dp[i]由dp[i-1]和dp[i-2]确定。
第一,dp数组表示不同阶数对应的方法,dp[i]表示需要i到达楼顶的方法数;
第二,递推公式:dp[i]=dp[i-1]+dp[i-2];
第三,dp数组的初始化:dp[0]和dp[1];
第三,dp[i]依赖于前两个元素值,类似斐波那契数列,从前往后遍历。

    int climbStairs(int n) {
        //动态规划,类似斐波那契数列
        if(n<=1)
            return n;   //必须有此限制,因为初始化到dp[2],避免空指针
        //vector<int> dp(n+1,0);
        int dp[3];
        dp[0]=0;
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<n+1;++i)
            //dp[i]=dp[i-1]+dp[i-2];  //直接统计每个元素的数列值
        {
            int sum=dp[1]+dp[2];
            dp[1]=dp[2];
            dp[2]=sum;
        }
        return dp[2];
    }

三、746 使用最小花费爬楼梯

题目链接:746 使用最小花费爬楼梯

核心:每次可以爬1个或2个台阶,意味着到达当前i阶数可以从i-1爬1个或者从i-2爬2个,只是为了所使用花费最小,则需要从两种方法中选择其一。
第一,dp数组表示爬到楼顶每个阶数的所需最小花费;
第二,递推公式:dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
第三,初始化:dp[0]和dp[1];
第四,遍历顺序:从前往后。

    int minCostClimbingStairs(vector<int>& cost) {
        //动态规划
        vector<int> dp(cost.size()+1,0);    //数组大小包括楼顶,故比cost大1
        dp[0]=0;    //从下标为0或1开始即这两个元素值为0
        dp[1]=0;
        for(int i=2;i<dp.size();++i)
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        return dp[cost.size()];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值