台湾李宏毅ML2016-hw0

台湾李宏毅ML2016-hw0

初学深度学习,选择台湾教授李宏毅的ML2016,在看完他的开始视频后留有一篇课后作业,在此,我动手实践了一下。

该HW0有2个作业:

1. 读dat格式的数据,并进行特定行进行排序,然后输出;

2. 读取一个图片,进行翻转操作。



完整的作业格式要求在 HW0作业要求
此作业我在win10下基于python2.7.13完成,开发环境为PyCharm2017
先上第一个作业的代码:
#!/usr/bin/python3
# -*- coding: UTF-8 -*-

x = []
y = []
z = []
file = open('G:\git sources\ML2016\hw0\hw0_data.dat', 'r')  # 改成自己的hw0_data.dat的地址
for line in file:
    trainingSet = line.split(' ')   # 对于每一行,按‘ ’把数据分开
    x.append(trainingSet[3])
x = map(float, x)   # 将x从str转换成float
for i in x:
    y.append(i)
y = sorted(y)   # 升s序排列

outfile = open('G:\git sources\ML2016\hw0/ans1.txt', 'w')  # 改成自己的ans1.txt的地址
y = map(str, y)    # 将y从float转换成str
for i in y:
    z.append(i)
print(z)

outfile.write(str(z))
outfile.close()
我选取的是第三列,可以自己定义取哪一列。
其中hw0_data.dat文件内容为:


输出ansi.txt为:

下面送上第二个作业的代码:
#!/usr/bin/python3
# -*- coding: UTF-8 -*-

from PIL import Image
from numpy import *

pil_im = Image.open('G:/git sources/ML2016/hw0/Lena.png')   # 写入自己本地Lena.png文件的位置
pil_im = pil_im.rotate(180)     # rotate()里面的参数是旋转度数
pil_im.save('G:/git sources/ML2016/hw0/ans2.png', 'png')    # 保存位置及名称
第二题更加简单,直接使用ratate()函数使图片旋转180°,然后保存。
效果如下:

整体就是这么简单,OVER。

李宏毅ML2021春季课程的第三个作业是一个关于自然语言处理任务的实践项目。这个作业涵盖了文本分类、情感分析和命名实体识别等主题。 学生们的任务是使用提供的数据集,通过实现机器学习算法,对文本进行分类和情感分析。对于命名实体识别,学生们需要利用已有的工具和技术来提取文本中的实体,例如人名、地名、组织名等。 在这个作业中,学生们需要掌握一些基本的自然语言处理技术和算法。他们需要了解常用的特征提取方法,例如词袋模型和TF-IDF。此外,学生们还需要学习基本的分类算法,如朴素贝叶斯和支持向量机。在情感分析任务中,学生们需要了解情感词典和情感分析的基本原理。 此外,学生们还需要使用Python编程语言和相关的自然语言处理工具库,如NLTK和SpaCy。通过实践项目,学生们将获得与自然语言处理相关的实际经验,并加深对机器学习模型和算法的理解。 完成这个作业需要一定的时间和努力。学生们需要仔细阅读作业要求和相关文档,并按照要求完成代码实现和实验报告。他们还需要参考课程讲义和推荐的学习资源,以加深对自然语言处理领域的理解。 总的来说,李宏毅ML2021春季课程的HW3是一个涉及自然语言处理任务的实践作业。通过完成这个作业,学生们将掌握基本的自然语言处理技术和算法,并获得与自然语言处理相关的实际经验。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值