题目:输入一个整形数组。数组中有正数也有负数。数组中一个或者连续多个整数组成的一个子数组。求所有的子数组和的最大值。要求时间复杂度为O(n)。
这题可以用典型的动态规划来解。可以找到规律,考虑声明一个数组a[len],m[i]代表取前面i个数时它的子数组的最大值。考虑第i个数,当前面i-1个数的最大值是m[i-1];此时
m[i]=max(m[i-1]+a[i],a[i]);代码如下:
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
int maxVal=INT_MIN;
int i;
if(array.size()==0)
return 0;
int tempMax[array.size()];
tempMax[0]=array[0];
for(i=1;i<array.size();i++)
{
tempMax[i]=max(tempMax[i-1]+array[i],array[i]);
if(maxVal<tempMax[i])
maxVal=tempMax[i];
}
return maxVal;
}
};