面试题31:连续子数组的最大和

        题目:输入一个整形数组。数组中有正数也有负数。数组中一个或者连续多个整数组成的一个子数组。求所有的子数组和的最大值。要求时间复杂度为O(n)。

       这题可以用典型的动态规划来解。可以找到规律,考虑声明一个数组a[len],m[i]代表取前面i个数时它的子数组的最大值。考虑第i个数,当前面i-1个数的最大值是m[i-1];此时

m[i]=max(m[i-1]+a[i],a[i]);代码如下:

       

class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
        int maxVal=INT_MIN;
        int i;
        if(array.size()==0)
            return 0;
        int tempMax[array.size()];
        tempMax[0]=array[0];
        for(i=1;i<array.size();i++)
        {
            tempMax[i]=max(tempMax[i-1]+array[i],array[i]);
            if(maxVal<tempMax[i])
                maxVal=tempMax[i];
        }
        return maxVal;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值