dp方程 c o s t [ i ] + = m i n ( c o s t [ i − 1 ] , c o s t [ i − 2 ] ) cost[i] += min(cost[i-1],cost[i-2]) cost[i]+=min(cost[i−1],cost[i−2]) ,其中 c o s t [ i ] cost[i] cost[i] 当前阶梯到下个阶梯所需要消耗的最小值, m i n ( c o s t [ i − 1 ] , c o s t [ i − 2 ] ) min(cost[i-1],cost[i-2]) min(cost[i−1],cost[i−2]) 为上个阶梯到当前阶梯所要消耗的最小值。
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
cost.push_back(0);
for(int i = 2; i < cost.size(); i++) {
cost[i] += min(cost[i-1],cost[i-2]);
}
return cost.back();
}
};
朴素 D P DP DP 做法,在第 i − 2 i-2 i−2, i − 3 i-3 i−3 之中取最大值。
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
if(n == 1) return nums[0];
if(n == 2) return max(nums[0],nums[1]);
nums[2] += nums[0];
//因为跨度有4个,为了防止漏掉 nums[2] + nums[0]
int res = max(nums[2],nums[1]);
for(int i = 3; i < nums.size(); i++) {
nums[i] += max(nums[i-2], nums[i-3]);
res = max(nums[i],res);
}
return res;
}
};
思路基于朴素 D P DP DP,使用记忆化搜索实现,更好理解
class Solution {
public:
vector<int> dp;
int rob(vector<int>& nums) {
int n = nums.size();
dp.resize(n,-1);
return max(dfs(n-2,nums),dfs(n-1,nums));
}
int dfs(int pos, vector<int> &nums) {
if(pos < 0) return 0;
if(dp[pos] != -1) return dp[pos]; //如果搜索过了就直接回溯
dp[pos] = nums[pos] + max(dfs(pos-2,nums),dfs(pos-3,nums));
return dp[pos];
}
};
更简洁的 D P DP DP 写法, d p [ i ] dp[i] dp[i] 表示 盗取 n u m s [ i ] nums[i] nums[i] 之前可以获得的最大价值。
class Solution {
public:
int rob(vector<int>& nums) {
int dp[nums.size()+2];
memset(dp,0,sizeof(dp));
for(int i=2;i<=nums.size()+1;i++)
dp[i] = max(dp[i-2]+nums[i-2],dp[i-1]);
return dp[nums.size()+1];
}
};
环形房屋主要就是避免头尾同时选,那么就分两种情况:1、不考虑尾 2、不考虑头。
在这两种情况的最优值中取一个最大即可。
class Solution {
public:
int robRange(vector<int> &nums, int st, int ed) {
int dp[2]={nums[st],max(nums[st],nums[st+1])};
for(int i = st+2; i < ed; i++) {
int t = dp[1];
dp[1] = max(dp[0]+nums[i], dp[1]);
dp[0] = t;
}
return dp[1];
}
int rob(vector<int>& nums) {
int n = nums.size();
if(n==1) return nums[0];
if(n==2) return max(nums[0],nums[1]);
return max(robRange(nums,0,n-1),robRange(nums,1,n));
}
};