插入排序(Insertion Sort)

一,插入排序算法分析

插入排序算法有种递归的思想在里面,它由N-1趟排序组成。初始时,只考虑数组下标0处的元素,只有一个元素,显然是有序的。

然后第一趟 对下标 1 处的元素进行排序,保证数组[0,1]上的元素有序;

第二趟 对下标 2 处的元素进行排序,保证数组[0,2]上的元素有序;

…..

…..

第N-1趟对下标 N-1 处的元素进行排序,保证数组[0,N-1]上的元素有序,也就是整个数组有序了。

它的递归思想就体现在:当对位置 i 处的元素进行排序时,[0,i-1]上的元素一定是已经有序的了。

例如:40 80 45 30 20 70
第一轮:40 80 45 30 20 70 —> 40 80 45 30 20 70 i=1
第二轮:40 80 45 30 20 70 —> 40 45 80 30 20 70 i=2
第三轮:40 80 45 30 20 70 —> 30 40 45 80 20 70 i=3
第四轮:40 80 45 30 20 70 —> 20 30 40 45 80 70 i=4
第五轮:40 80 45 30 20 70 —> 20 30 40 45 70 80 i=5

例如:
这里写图片描述

template<typename T>
void selectionSort(T arr[], int n)
{

    for (int i = 0; i < n; i++)
    {

        int minIndex = i;
        for (int j = i + 1; j < n; j++)
            if (arr[j] < arr[minIndex])
                minIndex = j;

        swap(arr[i], arr[minIndex]);
    }
}

优化

template<typename T>
void insertionSort(T arr[], int n)
{
    // 寻找元素arr[i]合适的插入位置
    for (int i = 1; i < n; i++)
    {
        T e = arr[i];
        int j;
        for (j = i; j > 0 && arr[j-1] > e; j--)
        {
            arr[j] = arr[j - 1];
        }
        arr[j] = e;
    }
}

参考博客1:https://www.cnblogs.com/hapjin/p/5517667.html
参考博客2:https://blog.csdn.net/llzk_/article/details/51628574

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值